The endomorphism semiring of a semilattice

Jaroslav Ježek

Charles University, Praha, Czech Republic

These results were obtained together with T. Kepka and M. Maróti. The question that we were interested in is: What are the semilattices M such that the semiring E_M of all endomorphisms of M (or some distinguished subsemirings of E_M) is simple, or at least subdirectly irreducible.

Denote by F_M the subsemiring of E_M generated by all at most two-valued endomorphisms of M. Then every subsemiring E of E_M containing F_M is subdirectly irreducible; if E contains the identical endomorphism, then Eis simple if and only if M contains both the least and the largest elements. (We have $F_M = E_M$ if and only if M is a finite distributive lattice.)

Now let M be a semilattice with the largest element 1. We denote by E_M^1 the semiring of the endomorphisms f of M such that f(M) = 1; if M has also the least element 0, we denote by E_M^{01} the semiring of the endomorphisms f of M such that f(0) = 0 and f(1) = 1. It turns out that every subsemiring of E_M^1 containing all at most two-valued endomorphisms, and also every subsemiring of E_M^{01} containing all at most three-valued endomorphisms, is subdirectly irreducible. The description of their monoliths makes it possible to say precisely which of these subsemirings are simple.