Ore extensions over Weak $\sigma\text{-rigid}$ rings and $\sigma(*)\text{-rings}$

Vijay Kumar Bhat e-mail: vijaykumarbhat2000@yahoo.com SMVD University, India

Throughout this paper R will denote an associative ring with identity $1 \neq 0$. The field of complex numbers is denoted by \mathbb{C} , the field of rational numbers is denoted by \mathbb{Q} , the ring of integers is denoted by \mathbb{Z} , and the set of positive integers is denoted by \mathbb{N} . The set of prime ideals of R is denoted by Spec(R). The set of minimal prime ideals of R is denoted by Min.Spec(R). The prime radical and the set of nilpotent elements of R are denoted by P(R) and N(R) respectively. We note that for a commutative ring P(R) and N(R).

Let now R be a ring and σ an endomorphism of a ring R. Recall that R is said to be a $\sigma(*)$ -ring if $a\sigma(a) \in P(R)$ implies $a \in P(R)$ for $a \in R$, where P(R) is the prime radical of R (Kwak [6]).

Example 1: (Example 2 of Kwak [6]): Let $R = \begin{pmatrix} F & F \\ 0 & F \end{pmatrix}$, where F is a field. Then $P(R) = \begin{pmatrix} 0 & F \\ 0 & 0 \end{pmatrix}$ Let $\sigma : R \to R$ be defined by $\sigma(\begin{pmatrix} a & b \\ 0 & c \end{pmatrix})$ $= \begin{pmatrix} a & 0 \\ 0 & c \end{pmatrix}$. Then it can be seen that σ is an endomorphism of R and R is a $\sigma(*)$ -ring. We also recall that R is said to be a weak σ -rigid ring if $a\sigma(a) \in N(R)$ if and only if $a \in N(R)$ for $a \in R$, where N(R) is the set of nilpotent elements of R (Ouyang [9]).

Example 2: (Example (2.1) of Ouyang [9]: Let σ be an endomorphism of a ring R such that R is a σ -rigid ring. Let

$$A = \left\{ \left(\begin{array}{ccc} a & b & c \\ 0 & a & d \\ 0 & 0 & a \end{array} \right) \mid \mathbf{a}, \, \mathbf{b}, \, \mathbf{c}, \, \mathbf{d} \in R \right\}$$

be a subring of $T_3(R)$, the ring of upper triangular matrices over R. Now σ can be extended to an endomorphism $\overline{\sigma}$ of A by $\overline{\sigma}((a_{ij})) = (\sigma(a_{ij}))$. The it can be seen that A is a weak $\overline{\sigma}$ -rigid ring.

Recall that a ring R is 2-primal if and only if N(R) = P(R) if and only if the prime radical is a completely semiprime ideal. An ideal I of a ring R is called completely semiprime if $a^2 \in I$ implies $a \in I$ for $a \in R$. We note that a reduced is 2-primal.

Ore Extensions (skew polynomial rings):

Now let R be a ring and σ an endomorphism of R and δ is a σ -derivation of R. Recall that the skew polynomial ring $R[x; \sigma, \delta]$ is the set of polynomials $\{\sum_{i=0}^{n} x^{i} a_{i}, a_{i} \in \mathbb{R}, n \in \mathbb{N}\}\$ where \mathbb{N} is the set of positive integers

with usual addition of polynomials and multiplication subject to the relation $ax = x\sigma(a) + \delta(a)$ for all $a \in R$. We take any $f(x) \in R[x; \sigma, \delta]$ to be of the form $f(x) = \sum_{i=0}^{n} x^{i}a_{i}, a_{i} \in R$ as in McConnell and Robson [8]. We denote $R[x; \sigma, \delta]$ by O(R). Skew-polynomial rings have been of interest to many authors. For example [1], [2], [3], [4], [6], [7], [8], [9].

In this paper we give a relation between a $\sigma(*)$ -ring and a weak σ -rigid ring. We also give a necessary and sufficient condition for a Noetherian ring to be a weak σ -rigid ring. Let σ be an endomorphism of a ring R and δ a σ -derivation of R such that $\sigma(\delta(a)) = \delta(\sigma(a))$ for all $a \in R$. Then σ can be extended to an endomorphism (say $\overline{\sigma}$) of $R[x; \sigma, \delta]$ and δ can be extended to a $\overline{\sigma}$ -derivation (say $\overline{\delta}$) of $R[x; \sigma, \delta]$.

Before we state the results, we recall that a completely prime ideal in a ring R is any (prime) ideal such that R/P is a domain (Chapter 9 of Goodearl and Warfield [5]). By definition we note that every completely prime ideal of a ring R is a prime ideal, but the converse need not be true.

Example 3: Let $R = \begin{pmatrix} \mathbb{Z} & \mathbb{Z} \\ \mathbb{Z} & \mathbb{Z} \end{pmatrix} = M_2(\mathbb{Z})$. If p is a prime number, then the ideal $P = M_2(p\mathbb{Z})$ is a prime ideal of R, but is not completely prime, since for $a = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$ and $b = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$, we have $ab \in P$, even though $a \notin P$ and $b \notin P$.

With this we prove the following results:

- (1) Let R be a Noetherian ring which is also an algebra over \mathbb{Q} . Let σ be an automorphism of R such that R is a $\sigma(*)$ -ring. Then $U \in Min.Spec(R)$ implies that $UO(R) = U[x; \sigma, \delta]$ is a completely prime ideal of $O(R) = R[x; \sigma, \delta]$.
- (2) Let R be a Noetherian ring. Let σ be an automorphism of R such that R is a $\sigma(*)$ -ring. Then R is a weak σ -rigid ring. Conversely a 2-primal weak σ -rigid ring is a $\sigma(*)$ -ring.
- (3) Let R be a commutative Noetherian ring. Let σ be an automorphism of R. Then R is a weak σ -rigid ring implies that N(R) is completely semiprime.
- (4) Let R be a commutative Noetherian ring. Let σ be an automorphism of R. Then R is a 2-primal weak σ -rigid ring if and only if for each minimal prime U of R, $\sigma(U) = U$ and U is completely prime ideal of R.
- (5) Let R be a commutative Noetherian ring. Let σ be an automorphism of R such that R is a $\sigma(*)$ -ring. Then O(N(R)) = N(O(R)).

Using the above results we prove the following main Theorem:

Theorem A: Let R be a 2-primal commutative Noetherian ring. Let σ be an automorphism of R and δ a σ -derivation of R such that $\sigma(\delta(a)) = \delta(\sigma(a))$ for all $a \in R$. Then R is a weak σ -rigid ring implies that $O(R) = R[x; \sigma, \delta]$ is a weak $\overline{\sigma}$ -rigid ring.

References

- Annin S.: Associated primes over skew polynomial rings, Comm. Algebra, Vol. 30(5) (2002), 2511-2528.
- [2] Bhat V. K.: On 2-Primal Ore extensions, Ukrainian Math. Bulletin, Vol. 4 (2007), 173-179.
- Bhat V. K. : Associated prime ideals of skew polynomial rings, Beitrge Algebra Geom., Vol. 49(1) (2008), 277-283.
- [4] Faith C. : Associated primes in commutative polynomial rings, Comm. Algebra, Vol. 28 (2000), 3983-3986.
- [5] Goodearl K. R., Warfield R.B. : An introduction to Non-commutative Noetherian rings, Camb. Uni. Press, 1989.
- [6] Kwak T. K. : Prime radicals of skew-polynomial rings, Int. J. Math. Sci., Vol. 2(2) (2003), 219-227.
- [7] Marks G. : On 2-primal Ore extensions, Comm. Algebra, Vol. 29 (5) (2001), 2113-2123.
- [8] McConnell J. C., Robson J. C. : *Noncommutative Noetherian Rings*, Wiley 1987; revised edition: Amer. Math. Soc. 2001.
- [9] Ouyang L. : Extensions of generalized α -rigid rings, Int. Electron. J. Algebra, Vol. 3 (2008), 103-116.