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The system A = (A,∨,∧, (fa)a∈A, 1, 0) satisfying conditions

• (A,∨,∧, 0, 1) is a bounded lattice,
• fa is antitone isomorphism on the interval [a, 1] (for any a ∈ A), (more

precisely, inequality fa(x) ≤ fa(y) holds if and only if y ≤ x holds for any
x, y ∈ A).

is called to be a lattice with section antitone bijections.
Moreover, if the mappings fa are involutions (thus fa(fa(x)) = x holds for any

a ∈ A and x ∈ [a, 1]) then the system is called to be a lattice with section antitone
involutions.

The basic algebras was introduced in [2] as algebraic representation of the lat-
tices with section antitone involutions. We recall that the algebra A = (A,⊕,¬, 0)
of type 〈2, 1, 0〉 is a basic algebra if it satisfies the identities

BA1 x⊕ 0 = x,
BA2 ¬¬x = x,
BA3 ¬(¬x⊕ y)⊕ y = ¬(¬y ⊕ x)⊕ x,
BA4 ¬(¬(¬(x⊕ y)⊕ y)⊕ z)⊕ (x⊕ z) = 1.

It was proved in [1] that a finite comutative basic algebras (the basic algebras
with a commutative operation ‘⊕’) are just a finite MV algebras (the operation
‘⊕’ is also associative), see [3].

We will prove the theorem which is motivated by previous results:

Theorem 1. If the system A = (A,∨,∧, (fa)a∈A, 1, 0) is a lattice with section an-
titone bijections such that (A,∨,∧) is distributive lattice then the lattice (A,∨,∧)
is a direct product of the finite chains.
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