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We characterize semirings which can be represented by an algebra of binary
polynomials of the form a · x + y where the operations are compositions of func-
tions. Furthermore, we classify which algebras with two binary and two nullary
operations can be represented in this way and how these algebras are related to
semirings.

In what follows, we will consider algebras A = (A; +, ·, 0, 1) of type (2, 2, 0, 0).
For a ∈ A we define a binary polynomial function

fa(x, y) = a · x+ y.

Denote by F (A) = {fa(x, y); a ∈ A}.On the set F (A) we introduce the following
function compositions:

(fa ⊕ fb)(x, y) = fa(x, fb(x, y)),

(fa ◦ fb)(x, y) = fa(fb(x, y), y).

If we assume that A = (A; +, ·, 0, 1) satisfies the identities 1 · x = x, 0 · x = 0
and 0 + x = x then clearly f0(x, y) = y and f1(x, y) = x+ y. The algebra

F(A) = (F (A);⊕, ◦, y, x+ y)
will be called the function algebra assigned to A.

Definition 1. A semiring is an algebra A = (A; +, ·, 0, 1) such that

(i) + is associative and commutative,
(ii) · is associative,
(iii) + and · satisfy the left and right distributive laws

x · (y + z) = x · y + x · z,

(x+ y) · z = x · z + y · z,
(iv) + and · satisfy the idenities x+ 0 = x,

x · 1 = x = 1 · x,
x · 0 = 0 = 0 · x.

A semiring A is called simple (see [8]) if it satisfies the identity

x+ 1 = 1.

Theorem 1. For a semiring A = (A; +, ·, 0, 1), the following conditions are
equivalent:
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(1) F(A) = (F (A);⊕, ◦, y, x+ y) is a semiring and ϕ is an isomorphism of A
onto F(A),

(2) A is simple.

One can mention that commutativity of + was not used in the proof of Theorem
1. This motivates us to establish for what algebras A = (A; +, ·, 0, 1) of type
(2, 2, 0, 0) the mapping ϕ is an isomorphism of A on the functional algebra F(A).
We are going to show that, in such a case, A will share a majority of properties
of a semiring except commutatively of + and the right distributivity.

Theorem 2. Let A = (A; +, ·, 0, 1) be an algebra of type (2, 2, 0, 0) satisfying
x+ 0 = x = 0 +x, x · 0 = 0 and x · 1 = x. The following conditions are equivalent:

(1) ϕ : a 7→ fa(x, y) = a · x + y is an isomorphism of A onto F(A) =
(F (A);⊕, ◦, y, x+ y),

(2) + and · are associative and A satisfies
(x+ y) · z = x · z + y · z,
x · (y + z) + z = x · y + z.

The last identity of (2) in Theorem 2 is rather curious. Hence, we are interested
how this is related with left-distributivity and the absorption law. The complete
answer is contained in the following lemma and example.
Lemma 2. Let A = (A; +, ·, 0, 1) be an algebra of type (2, 2, 0, 0) satisfying asso-
ciativity of + and 0 + x = x, x · 0 = 0. Then:

(a) If A satisfies left-distributivity x · (y+ z) = x · y+ x · z and the absorption
law then A satisfies also

x · (y + z) + z = x · y + z.

(b) If A satisfies x · (y+ z) + z = x · y+ z then it satisfies the absorption law.

Due to Lemma 2, we are interested in the question if the identity x·(y+z)+z =
x · y + z together with associativity of + and the identities 0 + x = x, x · 0 = 0
can infer left-distributivity. The following example shows that it is not the case.

Example. Consider a three-element set A = {0, a, 1} and an algebra
A = (A; +, ·, 0, 1) where the operations + and · are determinded by the tables:

+ 0 a 1
0 0 a 1
a a a 1
1 1 1 1

· 0 a 1
0 0 a 0
a 0 a a
1 0 a 1

It is an easy exercise to verify that A satisfies all the identities of (2) of Theorem
2 and 0 + x = x = x + 0, x · 0 = 0, x · 1 = x. However, A does not satisfy left-
distributivity since e.g.

0 · (1 + a) = 0 · 1 = 0 6= a = 0 + a = 0 · 1 + 0 · a.
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