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Sums and tolerances are important concepts in lattice theory, and perhaps,
with some exceptions, only in lattice theory.

1. An easy way to sums

Given a congruence Θ of a lattice L, we can form the quotient lattice K = L/Θ,
and the Θ-blocks, which are lattices that form a K-indexed system {A | A ∈ K}.
If we want to recreate L from the lattice K and the system {A | A ∈ K}, then
we form the sum of a K-indexed system of lattices. Sum is also called P lonka
sum or Graczyńska sum, and it is one of the main tools for studying products of
lattice varieties; see, for instance, [1], [7], [8], [9], [12], [14]. For simplicity, here
we consider complete lattices only.

For a K-indexed system of lattices, one has to describe how the summands are
related. This is usually done by a pair of functors, one being the right adjoint of
the other, see [4] for historical details. Now we offer a single functor, which is an
easier to visualize . Let L1 = (L1,≤1) and L2 = (L2,≤2) be lattices. Roughly
speaking, a relation ρ ⊆ L1 × L2 will be called an atop relation, if taking disjoint
copies of L1 and L2 and putting L2 atop L1 modulo ρ (that is, adding ρ to the
union of ≤1 and ≤2), we obtain a complete lattice.

Theorem 1 ([4]). The class C of complete lattices, as objects, together with atop
relations, as morphisms, the lattice orderings, as identities, and the usual rela-
tional product, as operation, constitute a category.

As described in [4], summable systems of lattices can be defined as a functor
from K to C, and sums can be treated accordingly.

2. Tolerances as homomorphic images of congruences

By a tolerance we mean a reflexive, symmetric, compatible relation; see [2] for
a survey. While tolerances are congruences in congruence permutable varieties,
we have four arguments for their importance in Lattice Theory. Firstly, term func
tions of a finite lattice L are exactly those isotone functions that preserves all
tolerances, see [13]. Secondly, tolerances are, explicitely or implicitly present in
several gluings of lattices, see [6], [11], and [12], for example.

By a block of a tolerance ρ ⊆ L2, we mean a maximal subset X of L such that
X2 ⊆ ρ. Blocks are convex sublattices. Note that (x, y) ∈ ρ iff there is a block X
of ρ such that x, y ∈ X. If ρ is a tolerance of an algebra A, f is an n-ary operation
of A, and X1, . . . , Xn are blocks of ρ, then Zorn’s lemma yields a block Y of ρ su
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ch that f(x1, . . . , xn) ∈ Y , for all xi ∈ Xi. While this Y is not unique in general,
the following theorem, which is the third argument, holds.

Theorem 2 ([3]). Let ρ be a tolerance of a lattice L, and let L/ρ be the set of all
blocks of ρ. Then Y above is unique; this makes L/ρ an algebra (L/ρ,∨,∧) in the
obvious way. This (L/ρ,∨,∧) is a lattice.

For an alternative approach to L/ρ see [10]. If Θ is a congruence of an algebra
A and ϕ : A → B is a surjective homomorphism, then ϕ(Θ) = {(ϕ(x), ϕ(y)) :
(x, y) ∈ ρ} is clearly a tolerance of B. Our fourth argument is

Theorem 3 ([5]). Let ρ be a tolerance of a lattice L. Then there exist a lattice
M , a congruence Θ on M , and a surjective homomorphism ϕ : M → L such that
ρ = ϕ(Θ).

3. A link between sums and tolerances

The first proof of Theorem 3 (for the finite case only) ran as follows: we took a
sum of the blocks of ρ, which are lattices. However, in the talk we give a simpler
proof.
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