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Let Q be a quasivariety. If A ∈ Q, then ConQ(A) is the set of Q-congruences
of A:

ConQ(A) := {Φ ∈ Con(A) : A/Φ ∈ Q}.
ConQ(A) is an algebraic lattice. The members of ConQ(A) are called Q-con-

gruences. ΘA
Q(X) is the least Q-congruence in A that contains X ⊆ A2.

1. The equational commutator

Let α(x, y, z, w, u) := α(x1, ..., xm, y1, ..., ym, z1, ..., zn, w1, ..., wn, u1, ..., uk)
and β(x, y, z, w, u) := β(x1, ..., xm, y1, ..., ym, z1, ..., zn, w1, ..., wn, u1, ..., uk)
be terms in Teτ built up with at most the vari-
ables x = x1, ..., xm, y = y1, ..., ym, z = z1, ..., zn, w
= w1, ..., wn, and possibly other variables u = u1, ..., uk. (x and y are of
the same length; similarly z and w .)

Definitions 1.1. Let K be a class of algebras.

A. α(x, y, z, w, u) ≈ β(x, y, z, w, u) is a commutator equation for K in the
variables x, y and z, w if the equations

α(x, x, z, w, u) ≈ β(x, x, z, w, u) and α(x, y, z, z, u) ≈ β((x, y, z, z, u)

are valid in K.

B. A quaternary commutator equation for K (with parameters) is a commuta-
tor equation α(x, y, z, w, u) ≈ β(x, y, z, w, u) for K in single variables x, y and z, w.
(This means that the equations α(x, x, z, w, u) ≈ β(x, x, z, w, u) and α(x, y, z, z, u)
≈ β(x, y, z, z, u) are K-valid.) �

Note. It follows from the above definition that α(x, y, z, w, u) ≈
β(x, y, z, w, u) is a commutator equation for K (in the variables x, y and z, w)
iff it is a commutator equation (in x, y and z, w) for the variety Va(K) gener-
ated by K. Consequently, the classes K, Qv(K) and Va(K) possess the same
commutator equations. �

If Φ is a congruence of an algebra A and a = 〈a1, ..., am〉, b = 〈b1, ..., bm〉 are
sequences of elements of A of the same length, we write a ≡ b (Φ) to indicate that
ai ≡ bi (Φ) for i = 1, ...,m.

Definition 1.2. (Czelakowski [1]). Let A ∈ Q, where Q is a quasivariety,
and let Φ and Ψ be Q-congruences on A. The equationally defined commutator of
Φ and Ψ on A relative to Q (the equational commutator, for short), in symbols
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[Φ,Ψ]A,

is the least Q-congruence on A which contains the set of pairs:

{〈α(a, b, c, d, e), β(a, b, c, d, e)〉 : α(x, y, z, w, u) ≈ β(x, y, z, w, u)

is a commutator equation for Q, a ≡ b (Φ), c ≡ d (Ψ), and e ∈ A<ω}. �

Theorem 1.3. Let Q be a quasivariety of algebras, A ∈ Q, and Φ,Ψ ∈
ConQ(A). Then:

(i) [Φ,Ψ]A is a Q-congruence on A;

(ii) [Φ,Ψ]A ⊆ Φ ∩Ψ;

(iii) [Φ,Ψ]A = [Φ,Ψ]A;

(iv) The equational commutator is monotone in both arguments, i.e.,
if Φ1,Φ2 and Ψ1,Ψ2 are Q-congruences on A, then Φ1 ⊆ Φ2 and
Ψ1 ⊆ Ψ2 implies [Φ1,Ψ]A ⊆ [Φ2,Ψ]A and [Φ,Ψ1]A ⊆ [Φ,Ψ2]A.

�

2. Additivity of the equational commutator

Let Q be a quasivariety of algebras and A ∈ Q. The equational commutator
is additive on A if for any set {Ψi : i ∈ I} of Q-congruences of A and any
Ψ ∈ ConQ(A):

(C1) [supQ{Ψi : i ∈ I},Ψ]A = supQ{[Ψi,Ψ]A : i ∈ I}
in the lattice ConQ(A).

Theorem 2.1. Let Q be a quasivariety of algebras. The following conditions
are equivalent:

(1) The equational commutator is additive on the algebras of Q.

(2) There exists a set ∆0(x, y, z, w, u) of quaternary commutator
equations for Q such that for every algebra A ∈ Q and for
every pair of sets X, Y ⊆ A2,
[ΘA

Q(X),ΘAQ(Y )]A =

ΘA
Q({〈α(a, b, c, d, e), β(a, b, c, d, e)〉 : α ≈ β ∈ ∆0, 〈a, b〉 ∈ X,
〈c, d〉 ∈ Y, e ∈ Ak}). �

If (2) holds, ∆0(x, y, z, w, u) is said to generate the equational commutator for
Q.

We need one more property of the commutator:

(C2) If h : A → B is a surjective homomorphism between Q-
algebras and Φ,Ψ ∈ ConQ(A), then ker(h) +A[Φ,Ψ]A =
h−1([ΘB

Q(hΦ),ΘB
Q(hΨ)]B).

Theorem 2.2. For any quasivariety Q, if the equational commutator for Q
satisfies (C1), then it satisfies (C2). �

Theorem 2.3. Let Q be an RCM quasivariety. Then the equational com-
mutator for Q and the commutator for Q in the sense of Kearnes-McKenzie [5]
coincide. �
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In the context of RCM quasivarieties we therefore speak of the commutator
for Q.

The crucial fact concerning the Kearnes-McKenzie commutator is that it
satisfies (C1) for any RCM quasivariety Q. In view of Theorems 2.1 and 2.3, we
therefore get:

Corollary 2.4. For every RCM quasivariety Q there exists a set
∆0(x, y, z, w, u) of quaternary commutator equations for Q generating the com-
mutator in the algebras of Q. �

Generating sets of quaternary equations for the equational commutator are
usually infinite and they involve parametric variables. More concrete forms of
generating sets can be defined for quasivarieties with the relative shifting property.
In some cases generating sets are finite:

Theorem 2.5. Let Q be a quasivariety with the additive equational com-
mutator. If Q is finitely generated, i.e., Q = SP (K) for a finite set K of fi-
nite algebras, then the equational commutator of Q is generated by a finite set
∆0(x, y, z, w, u) of quaternary commutator equations. �

Example. As the variety BA of Boolean algebras is congruence-distributive,
the commutator of any two congruences on a Boolean algebra coincides with the
meet of the two congruences.

Let α ≈ β be the equation (x ↔ y) ∨ (z ↔ w) ≈ 1. (↔,∨ and 1 stand for
the Boolean operations of equivalence and join, respectively. 1 stands for the unit
element.) α ≈ β is a quaternary commutator equation for BA.

The singleton set ∆(x, y, z, w, u) := α ≈ β generates the (equational) com-
mutator for BA, i.e., for any A ∈ BA and any X, Y ⊆ A2,

[ΘA
Q(X),ΘA

Q(Y )]A = ΘA
Q(X) ∩ΘA

Q(Y ) =

ΘA
Q(〈α(a, b, c, d), β(a, b, c, d)〉 : 〈a, b〉 ∈ X, 〈c, d〉 ∈ Y ). �

3. Prime algebras

Let A ∈ Q, where Q is a quasivariety, and let Φ be a Q-congruences on A.
Φ is prime (in the lattice ConQ(A)) if, for any Φ1,Φ2 ∈ ConQ(A), [Φ1,Φ2]A = Φ
implies Φ1 = Φ or Φ2 = Φ. ([Φ1,Φ2]A is the equational commutator of Φ1,Φ2 in
A in the sense of Q.)

A ∈ Q is prime (in Q) if 0A is prime in ConQ(A), i.e., [Φ1,Φ2]A = 0A holds
for no pair of nonzero congruences Φ1,Φ2 ∈ ConQ(A).

Theorem 3.1. Let Q be quasivariety with the additive equational commuta-
tor and a generating set ∆(x, y, z, w, u). Suppose A ∈ Q. The following conditions
are equivalent:

(i) A is prime.

(ii) A � (∀xyzw)((∀u) ∧∆(x, y, z, w, u)↔ x ≈ y ∨ z ≈ w). �

The basic result:

Theorem 3.2. Let Q be a quasivariety with the additive equational commu-
tator. (In particular, let Q be RCM.) Then
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(1) The class SP (QPRIME) is the largest RCD quasivariety included
in Q.

(2) QPRIME coincides with the class of all relatively finitely subdi-
rectly irreducible algebras in SP (QPRIME).

(3) SP (QPRIME) is axiomatized by any basis for Q augmented with
a single quasi-identity. �

Remarks.1. Let R be the variety of rings. (The existence of unit is not
assumed.) R is congruence permutable and hence congruence modular. Dziobiak
[2] describes RCD quasivarieties contained in R.

2. Kearnes [4] contains various characterizations of RCD subquasivarieties
of congruence modular varieties. �
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