Brandt λ^0 -extensions of monoids with zero

Oleg Gutik*

e-mail: o_gutik@franko.lviv.ua, ovgutik@yahoo.com Lviv National University, Ukraine

> Dušan Repovš e-mail: dusan.repovs@guest.arnes.si University of Ljubljana, Slovenia

Let S be a semigroup with zero and I_{λ} be a set of cardinality $\lambda \ge 1$. We define the semigroup operation on the set $B_{\lambda}(S) = (I_{\lambda} \times S \times I_{\lambda}) \cup \{0\}$ as follows:

 $(\alpha, a, \beta) \cdot (\gamma, b, \delta) = \begin{cases} (\alpha, ab, \delta), & \text{if } \beta = \gamma; \\ 0, & \text{if } \beta \neq \gamma, \end{cases}$

and $(\alpha, a, \beta) \cdot 0 = 0 \cdot (\alpha, a, \beta) = 0 \cdot 0 = 0$, for all $\alpha, \beta, \gamma, \delta \in I_{\lambda}$ and $a, b \in S$. Obviously, if S has zero then $\mathcal{J} = \{0\} \cup \{(\alpha, 0_S, \beta) \mid 0_S \text{ is the zero of } S\}$ is an ideal of $B_{\lambda}(S)$. We put $B_{\lambda}^0(S) = B_{\lambda}(S)/\mathcal{J}$ and the semigroup $B_{\lambda}^0(S)$ is called the *Brandt* λ^0 -extension of the semigroup S with zero [1]. Next, if $A \subseteq S$ then we shall denote $A_{\alpha\beta} = \{(\alpha, s, \beta) \mid s \in A\}$ if A does not contain zero, and $A_{\alpha,\beta} = \{(\alpha, s, \beta) \mid s \in A \setminus \{0\}\} \cup \{0\}$ if $0 \in A$, for $\alpha, \beta \in I_{\lambda}$.

Proposition 1. Let $\lambda \ge 1$ be any cardinal. Then the Brandt λ^0 -extension of a semigroup S is a regular, orthodox, inverse, 0-simple, completely 0-simple, primitive inverse or congruence-free semigroup if and only if such is also S.

Proposition 2. Let $\lambda_1, \lambda_2 \ge 1$ be any cardinals, S be a semigroup and S_1 be the Brandt λ_1^0 -extension of the semigroup S. Then the Brandt λ_2^0 -extension of the semigroup S_1 is isomorphic to the Brandt λ^0 -extension of the semigroup S for the cardinal $\lambda = \lambda_1 \cdot \lambda_2$.

Proposition 3. Let S be a monoid with zero, $\lambda \ge 1$ be any cardinal, and $B^0_{\lambda}(S)$ be the Brandt λ^0 -extension of S. Then every non-trivial homomorphic image of $B^0_{\lambda}(S)$ is the Brandt λ^0 -extension of some monoid with zero. Moreover, if T is the image of $B^0_{\lambda}(S)$ under a homomorphism h, then T is isomorphic to the Brandt λ^0 -extension of the homomorphic image of the monoid $S_{\alpha,\alpha}$ under the homomorphism h for any $\alpha \in I_{\lambda}$.

Definition 4. Let λ be any cardinal ≥ 2 . We shall say that a semigroup S has the \mathcal{B}^* -property if S does not contain the semigroup of 2×2 -matrix units and that S has the \mathcal{B}^*_{λ} -property if S satisfies the following conditions: S does not contain the semigroup of $I_{\lambda} \times I_{\lambda}$ -matrix units and S does not contain the semigroup of 2×2 -matrix units B_2 such that the zero of B_2 is the zero of T.

Theorem 5. Let λ_1 and λ_2 be cardinals such that $\lambda_2 \ge \lambda_1 \ge 1$. Let $B^0_{\lambda_1}(S)$ and $B^0_{\lambda_2}(T)$ be the Brandt λ_1^0 - and λ_2^0 -extensions of monoids S and T with zero, respectively. Let $h: S \to T$ be a homomorphism such that $(0_S)h = 0_T$ and suppose that $\varphi: I_{\lambda_1} \to I_{\lambda_2}$ is a one-to-one map. Let e be a non-zero idempotent of T, H_e a maximal subgroup of T with the unity e and $u: I_{\lambda_1} \to H_e$ a map. Then $I_h = \{s \in S \mid (s)h = 0_T\}$ is an ideal of S and the map $\sigma \colon B^0_{\lambda_1}(S) \to B^0_{\lambda_2}(T)$ defined by the formulae

$$((\alpha, s, \beta))\sigma = \begin{cases} ((\alpha)\varphi, (\alpha)u \cdot (s)h \cdot ((\beta)u)^{-1}, (\beta)\varphi), & \text{if } s \notin S \setminus I_h; \\ 0_2, & \text{if } s \in I_h^*, \end{cases}$$

and $(0_1)\sigma = 0_2$ is a non-trivial homomorphism from $B^0_{\lambda_1}(S)$ into $B^0_{\lambda_2}(T)$. Moreover, if for the semigroup T the following assertions hold:

- (i) every idempotent of T lies in the center of T; and
- (ii) T has the $\mathcal{B}^*_{\lambda_1}$ -property,

then every non-trivial homomorphism from $B^0_{\lambda_1}(S)$ into $B^0_{\lambda_2}(T)$ can be constructed in this manner.

Let S and T be monoids with zeros. Let $\operatorname{Hom}_0(S,T)$ be the set of all homomorphisms $\sigma: S \to T$ such that $(0_S)\sigma = 0_T$. We put

 $\mathbf{E}_1(S,T) = \{ e \in E(T) \mid \text{there exists } \sigma \in \operatorname{Hom}_0(S,T) \text{ such that } (1_S)\sigma = e \}$

and define the family

$$\mathscr{H}_1(S,T) = \{ H(e) \mid e \in \mathbf{E}_1(S,T) \},\$$

where we denote the maximal subgroup with the unity e in the semigroup T by H(e). Also by \mathfrak{B} we denote the class of monoids S with zeros such that S has \mathcal{B}^* -property and every idempotent of S lies in the center of S.

We define a category \mathscr{B} as follows: $\mathbf{Ob}(\mathscr{B}) = \{(S,I) \mid S \in \mathfrak{B} \text{ and } I \text{ is a non$ $empty set}\}$, and if S is a trivial semigroup then we identify (S,I) and (S,J) for all non-empty sets I and J; and $\mathbf{Mor}(\mathscr{B})$ consists of triples $(h, u, \varphi) \colon (S, I) \to (S', I')$, where

 $h: S \to S'$ is a homomorphism such that $h \in \operatorname{Hom}_0(S, S')$,

(1) $u: I \to H(e)$ is a map, for $H(e) \in \mathscr{H}_1(S, S')$,

 $\varphi \colon I \to I'$ is an one-to-one map,

with the composition

 $(h, u, \varphi)(h', u', \varphi') = (hh', [u, \varphi, h', u'], \varphi\varphi'),$

where the map $[u, \varphi, h', u']: I \to H(e)$ is defined by the formula

$$(\alpha)[u,\varphi,h',u'] = ((\alpha)\varphi)u' \cdot ((\alpha)u)h' \quad \text{for } \alpha \in I.$$

A straightforward verification shows that \mathscr{B} is a category with the identity morphism $\varepsilon_{(S,I)} = (\mathrm{Id}_S, u_0, \mathrm{Id}_I)$ for any $(S, I) \in \mathbf{Ob}(\mathscr{B})$, where $\mathrm{Id}_S \colon S \to S$ and $\mathrm{Id}_I \colon I \to I$ are identity maps and $(\alpha)u_0 = 1_S$ for all $\alpha \in I$.

We define the category $\mathscr{B}^*(\mathscr{S})$ as follows: $\mathbf{Ob}(\mathscr{B}^*(\mathscr{S}))$ are all Brandt λ^0 extensions of monoids S with zeros such that S has the \mathscr{B}^* -property and every idempotent of S lies in the center of S; and $\mathbf{Mor}(\mathscr{B}^*(\mathscr{S}))$ are homomorphisms of the Brandt λ^0 -extensions of monoids S with zeros such that S has the \mathscr{B}^* -property and every idempotent of S lies in the center of S.

For each $(S, I_{\lambda_1}) \in \mathbf{Ob}(\mathscr{B})$ with non-trivial S, let $\mathbf{B}(S, I_{\lambda_1}) = B^0_{\lambda_1}(S)$ be the Brandt λ^0 -extension of the semigroup S. For each $(h, u, \varphi) \in \mathbf{Mor}(\mathscr{B})$ with a non-trivial homomorphism h, where $(h, u, \varphi) \colon (S, I_{\lambda_1}) \to (T, I_{\lambda_2})$ and $(T, I_{\lambda_2}) \in$ **Ob**(\mathscr{B}), we define a map $\mathbf{B}(h, u, \varphi)$: $\mathbf{B}(S, I_{\lambda_1}) = B^0_{\lambda_1}(S) \to \mathbf{B}(T, I_{\lambda_2}) = B^0_{\lambda_2}(T)$ as follows:

$$((\alpha, s, \beta))[\mathbf{B}(h, u, \varphi)] = \begin{cases} ((\alpha)\varphi, (\alpha)u \cdot (s)h \cdot ((\beta)u)^{-1}, (\beta)\varphi), & \text{if } s \notin S \setminus I_h; \\ 0_2, & \text{if } s \in I_h^*, \end{cases}$$

and $(0_1)[\mathbf{B}(h, u, \varphi)] = 0_2$, where $I_h = \{s \in S \mid (s)h = 0_T\}$ is an ideal of S and 0_1 and 0_2 are the zeros of the semigroups $B^0_{\lambda_1}(S)$ and $B^0_{\lambda_2}(T)$, respectively. For each $(h, u, \varphi) \in \mathbf{Mor}(\mathscr{B})$ with a trivial homomorphism h we define a map $\mathbf{B}(h, u, \varphi)$: $\mathbf{B}(S, I_{\lambda_1}) = B^0_{\lambda_1}(S) \to \mathbf{B}(T, I_{\lambda_2}) = B^0_{\lambda_2}(T)$ as follows: $(a)[\mathbf{B}(h, u, \varphi)] = 0_2$ for all $a \in \mathbf{B}(S, I_{\lambda_1}) = B^0_{\lambda_1}(S)$. If S is a trivial semigroup then we define $\mathbf{B}(S, I_{\lambda_1})$ to be a trivial semigroup.

A functor **F** from a category \mathscr{C} into a category \mathscr{K} is called *full* if for any $a, b \in \mathbf{Ob}(\mathscr{C})$ and for any \mathscr{K} -morphism $\alpha \colon \mathbf{F}a \to \mathbf{F}b$ there exists a \mathscr{C} -morphism $\beta \colon a \to b$ such that $\mathbf{F}\beta = \alpha$, and **F** called *representative* if for any $a \in \mathbf{Ob}(\mathscr{K})$ there exists $b \in \mathbf{Ob}(\mathscr{C})$ such that a and **F** are isomorphic.

Theorem 6. B is a full representative functor from \mathscr{B} into $\mathscr{B}^*(\mathscr{S})$.

We observe that the statements similar to Theorem 6 hold for the categories of inverse and Clifford inverse semigroups.

We define the category \mathscr{BSL} as follows: $\mathbf{Ob}(\mathscr{BSL}) = \{(S,I) \mid S \text{ is a semilattice with unity and zero and } I \text{ is a non-empty set}\}$, and if S is a trivial semigroup then we identify (S,I) and (S,J) for all non-empty sets I and J and $\mathbf{Mor}(\mathscr{BSL})$ consists of corresponding triples (h, u, φ) : $(S, I) \to (S', I')$, which satisfy condition (1).

The second category $\mathscr{B}^*(\mathscr{SL})$ is defined as follows: $\mathbf{Ob}(\mathscr{B}^*(\mathscr{SL}))$ are all Brandt λ^0 -extensions of semilattices with zeros and identities and $\mathbf{Mor}(\mathscr{B}^*(\mathscr{SL}))$ are homomorphisms of the Brandt λ^0 -extensions of semilattices with zeros and identities.

Theorem 7. The categories \mathscr{BSL} and $\mathscr{B}^*(\mathscr{SL})$ are isomorphic.

Also we describe the structure of compact and countably compact topological Brandt λ^0 -extensions of topological monoids with zero and show that categories of compact and countably compact topological Brandt λ^0 -extensions of topological monoids with zero have similar property to Brandt λ^0 -extensions of monoids with zero.

References

 Gutik O. V., Pavlyk K. P.: On Brandt λ⁰-extensions of semigroups with zero, Mat. Metody Phis.-Mech. Polya. 49:3 (2006), 26–40.