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We characterize mode reducts of commutative monoids. We show that they
are equivalent to certain ternary algebras coming from the regularization of the
variety of integral affine spaces, and to some n-ary semilattices. For modes theory
and related topics see [7], [8] and [9].

1. Some varieties of commutative monoids

The lattice L(CM) of varieties of commutative monoids (M,+, 0) is isomorphic
to the lattice of congruence relations of the monoid (N,+, 0). See [3] and [4]. Each
non-trivial subvariety of the variety CM of commutative monoids is defined by
one additional identity

(1) (m+ n)x = mx,

where m ∈ N and n ∈ Z+. Such variety is denoted by Cm+n,m. For a fixed m,
the varieties Cm+n,m form a sublattice isomorphic to the lattice of positive natural
numbers with divisibility as an ordering relation. Each variety Cn,0 is equivalent
to the variety AGn of Abelian groups satisfying the identity nx = 0. Also each
variety AGn is equivalent to the variety MODn of modules over the ring Zn.

Any variety Cn,0 may be defined by the three identities defining commutative
monoids and by x+ ny = x. We apply P lonka’s theory of regularized varieties of
algebras with constant operations(see e.g. [5], [6] and [9]) to describe the structure
of monoids in the regularization C̃n,0 of Cn,0.

Proposition 1. The following classes coincide:
(a) the variety C1+n,1;

(b) the regularization C̃n,0 of Cn,0;
(c) the class of P lonka sums of monoids in Cn,0.

Monoids in the varieties C1+n,1 also have the structure of semimodules over
commutative semirings with identity. The semiring is isomorphic to the semir-
ing N1+n,1 obtained as the quotients N/cg(1 + n, 1) of the semiring N of natu-
ral numbers by the principal congruence generated by (1 + n, 1). Each variety
C1+n,1 is equivalent to the variety SMOD1+n,1 of semimodules over the semiring
N1+n,1. Both the semiring N1+n,1 and the variety SMOD1+n,1 satisfy the identity
x(1 + n) = x.
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2. Mode reducts of commutative monoids

By associativity and commutativity of monoid addition, also all derived monoid
operations satisfy entropic laws. It follows that to find mode reducts of commu-
tative monoids it is sufficient to look for its idempotent reducts.

Full idempotent reducts of Z-modules (A,+,Z) are given by integral affine
spaces, reducts (A,P,Z) of (A,+,Z), where xyzP = x−y+z is the ternary Mal’cev
operation, and for each n ∈ Z, there is a binary operation xyn = x(1 − n) + yn.
(See [9].) The reduct (A,P ) and affine space (A,P,Z) are equivalent. The class
of all such algebras forms a variety. It is denoted by Z.

The lattice L(Z) of subvarieties of Z is isomorphic to the lattice L(AG) of
varieties of abelian groups. Under this isomorphism one assigns to each subvariety
AGn of AG the subvariety Z

n
of Z of affine Zn-spaces, defined by the additional

identity y(x(y(. . . )yP )xP )yP = x, where y is repeated n times.
We would like to find full idempotent reducts of commutative monoids.

Proposition 2. Each idempotent derived (non-trivial) operation of a monoid in
the variety C1+n,1 may be obtained from the operation

ωn+1(x1, . . . , xn+1) = x1 + x2 + . . . xn+1

by a suitable compositions of ωn+1 and identification of variables.

Let us note that in the variety Cn,0, the Mal’cev operation P can be written as
xyzP = x+ (n− 1)y+ z. It is also a term operation of C1+n,1-monoids, though in
C1+n,1, it is no more a Mal’cev operation.

Theorem 3. Let (M,+, 0) be a monoid in the variety C1+n,1. Then the following
three sets of derived operations coinside:

(a) the set of idempotent derived operations of (M,+, 0),
(b) the set of derived operations of the reduct (M,P ),
(c) the set of derived operations of the reduct (M,ωn+1).

3. Semiaffine N1+n,1-spaces and (n+ 1)-semilattices

By analogy with affine spaces, we will call the full idempotent reducts of C1+n,1-
monoids, semiaffine spaces over N1+n,1 or semiaffine N1+n,1-spaces. Results of
Section 2 show that the semiaffine space that is a reduct of a C1+n,1-monoid M is
equivalent to the reducts (M,P ) and (M,ωn+1).

For an idempotent irregular variety V without constant operations, its regu-

larization Ṽ coincides with the class of P lonka sums of V-algebras over arbitrary
semilattice.

Let us call P lonka sums of V-algebras over semilattices with the smallest element

bounded P lonka sums and denote by Ṽb the class of all such algebras.

Theorem 4. The subclass Z̃b

n
of bounded P lonka sums of the regularization Z̃

n
of the variety Z

n
consists precisely of algebras term equivalent to full idempotent

reducts of C1+n,1-monoids.

The full idempotent reducts of C1+n,1-monoids may also be described using the
operation ωn+1. This operation is idempotent and satisfies certain generalized
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commutativity and associativity. Such algebras with one (n + 1)-ary operation
are called (n + 1)-semilattice. The (n + 1)-semilattices are modes. Hence the
reduct (M,ωn+1) of any C1+n,1-monoid (M,+, 0) is an (n+ 1)-semilattice.

Let SLn+1 be the variety of (n+1)-semilattices. And let SL0
n+1 be its subvariety

defined by the identity ωn+1(x, y, . . . , y) = x.

Lemma 5. (a) The variety SLn+1 of (n+ 1)-semilattices is the regularization of
the subvariety SL0

n+1.
(b) Let (A, ωn+1) be a member of SL0

n+1. Define a ternary operation xyzP on
A by

xyzP := ωn+1(x, y, . . . , y, z).

Then (A,P ) is a member of the variety Z
n
.

(c) Let (A,P ) be an algebra in Z
n
. Define an (n + 1)-ary operation

ωn+1(x1, x2, . . . , xn+1) on A by:

ωn+1(x1, x2, . . . , xn+1) = (. . . ((x1x2x3P )x2x4P ) . . . )x2xn+1P.

Then (A, ωn+1) is an (n+ 1)-semilattice in the variety SL0
n+1.

(d) The varieties SL0
n+1 and Z

n
are equivalent.

Theorem 6. The varieties SLn+1 and Z̃
n

are equivalent.

Theorem 7. The subclass SLbn+1 of bounded P lonka sums of the regularization
SLn+1 of the variety SL0

n+1 consists precisely of algebras term equivalent to full
idempotent reducts of C1+n,1-monoids.

4. Semiaffine Z-spaces

The full idempotent reducts of C1+n,1-monoids form a subclass of the regular-

ization Z̃
n

of the variety Z
n
. In contrast with the varieties AGn, the variety AG

of all abelian groups is not (equivalent to) a variety of commutative monoids. To

represent algebras in the regularization ÃG of AG, in a similar way as in the case
of regularization of AGn, we have to use commutative Clifford monoids. Clif-
ford monoid is a commutative monoid with a unary operation − satisfying the
identities: x+(−x)+x = x, −(−x)=x and −(x+y)=(−x)+(−y).

The varieties ÃG and the variety of commutative Clifford monoids coincide. We
will call the full idempotent reducts of commutative Clifford monoids semiaffine
Z-spaces.

Proposition 8. Each (non-trivial) idempotent derived operation of a commutative
Clifford monoid (A,+,−, 0) may be obtained from the regMal’cev operation P by
a suitable composition of P and identification of variables.

As in the case of Theorem 4, one obtains the following theorem.

Theorem 9. The subclass Z̃
b

of bounded P lonka sums of the regularization Z̃ of
the variety Z consists precisely of algebras term-equivalent to semiaffine Z-spaces.
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