Note on strict residuated lattices with an involutive negation

Michiro Kondo

e-mail: kondo@sie.dendai.ac.jp School of Information Environment, Tokyo Denki University, Japan

1. INTRODUCTION

In [1], BL-algebras with a new involutive negation \neg are introduced and studied, where the new negation is different from the original one $x' = x \rightarrow 0$ defined by its t-norm \odot . The new involutive negation \neg characterized by

 $\begin{array}{ll} (\neg 1) & \neg \neg x = x \\ (\neg 2) & x' \leq \neg x \\ (\neg 3) & \Delta(x \to y) = \Delta(\neg y \to \neg x), \text{ where } \Delta x = \neg x \to 0 \\ (\neg 4) & \Delta x \lor (\Delta x)' = 1 \\ (\neg 5) & \Delta(x \lor y) \leq \Delta x \lor \Delta y \\ (\neg 6) & \Delta x \odot \Delta(x \to y) \leq \Delta y \end{array}$

is introduced on strict BL-algebras (simply SBL-algebras), that is, BL-algebras with a strictness axiom $(S) : (x \odot y)' = x' \lor y'$. It is also considered independence of these axioms in [1] and is proved that, for any SBL-algebra $(L, \land, \lor, \odot, \rightarrow, 0, 1)$, it is an SBL_¬-algebra if and only if it satisfies only $(\neg 1)$, $(\neg 3)$ and $(\neg 6)$. The following question was left open in it:

Are the axioms $(\neg 1)$, $(\neg 3)$ and $(\neg 6)$ over SBL-algebras independent?

This was recently solved [5] that, for any SBL-algebra, it is an SBL_¬-algebra if and only if it satisfies $(\neg 1)$ and $(\neg 3)$.

Since MV-algebras are axiomatic extensions of BL-algebras, the result above also holds for MV-algebras, that is, for any strict MV-algebra, it is an SMV_¬-algebra if and only if it satisfies (\neg 1) and (\neg 3).

It is a natural question that "How about the case of MTL-algebras?" or generally "For any strict bounded commutative residuated lattice (simply call an SRL-algebra), is it true that it is an SRL_¬-algebra if and only if it satisfies (\neg 1) and (\neg 3) ?"

We answer the question "yes" that

For any SRL-algebra, it is an SRL_¬-algebra if and only if it satisfies $(\neg 1)$ and $(\neg 3)$.

2. Strict bounded commutative residuated lattice (SRL)

An algebraic structure $\mathcal{L} = (L, \wedge, \vee, \odot, \rightarrow, 0, 1)$ is called an integral bounded commutative residuated lattice (simply called *residuated lattice* and denoted by RL here) if

(1) $(L, \wedge, \vee, 0, 1)$ is a bounded lattice;

- (2) $(L, \odot, 1)$ is a commutative monoid;
- (3) For all $x, y, z \in L$,

 $x \odot y \le z$ if and only if $x \le y \to z$

Some well-known algebras, MTL-algebras, BL-algebras, MV-algebras and so on, are axiomatic extensions of RL as follows:

$$MTL = RL + \{(x \to y) \lor (y \to x) = 1\}$$
$$BL = MTL + \{x \land y = x \odot (x \to y)\}$$
$$MV = BL + \{x'' = x\}$$

An integral bounded commutative residuated lattice L is called *strict* (simply called an SRL-algebra) if it satisfies an axiom called strictness

(S): $(x \odot y)' = x' \lor y'$, where $x' = x \to 0$.

For the sake of simplicity, we denote SMTL, SBL and SMV, for algebras MTL, BL and MV with strict axiom. Thus, for example, SBL is a strict BL-algebra, that is, BL-algebra with meeting the axiom $(x \odot y)' = x' \lor y'$.

Proposition 1. Let L be an SRL-algebra. For all $x, y, z \in L$,

(1) $x \odot x' = 0$, hence $x' \lor x'' = 1$ (2) $x \le x'', x' = x'''$ (3) $x \to x' = x'$ (4) $x' \to x = x''$ (5) $(x \to y)'' = y' \to x'$

In [3], for linearly ordered BL-algebras, it is proved that the strictness axiom $(x \odot y)' = x' \lor y'$ is equivalent to the condition that the negation is a Gödel one, that is, x' = 0 if $x \neq 0$ and x' = 1 if x = 0. We can show a similar result in the case of linearly ordered RL-algebras (i.e., RL-chains).

Proposition 2. On any linearly ordered RL-algebra L, the following conditions are equivalent:

(1) (S) : $(x \odot y)' = x' \lor y'$ (2) If $x \odot y = 0$ then x = 0 or y = 0(3) $x' = x \to 0$ is the Gödel negation.

We note that, for any SRL-algebra, the negation has a property that x' = 1 if and only if x = 0, which is also proved in [4] in the case of SBL-algebras.

According to [1], we introduce a new involutive negation \neg .

$$\begin{array}{ll} (\neg 1) & \neg \neg x = x \\ (\neg 2) & x' \leq \neg x \\ (\neg 3) & \Delta(x \to y) = \Delta(\neg y \to \neg x), \text{ where } \Delta x = \neg x \to 0 \\ (\neg 4) & \Delta x \lor (\Delta x)' = 1 \\ (\neg 5) & \Delta(x \lor y) \leq \Delta x \lor \Delta y \\ (\neg 6) & \Delta x \odot \Delta(x \to y) \leq \Delta y \end{array}$$

For an SRL-algebra, we call it an SRL_¬-algebra if it contains a new symbol \neg as a language and satisfies (\neg 1) - (\neg 6) above. We similarly define SMTL_¬-, SBL_¬- and SMV_¬-algebras. Thus, for example, an SMTL_¬-algebra is a strict MTL-algebra satisfying (\neg 1) - (\neg 6).

Proposition 3. Let L be an SRL-algebra satisfying only $(\neg 1)$ and $(\neg 3)$. Then we have

(1) $\neg 0 = 1, \ \neg 1 = 0$ (2) $\Delta x = 1 \iff x = 1$ (3) $x \le y \Longrightarrow \neg y \le \neg x$ (4) $x \leq y \Longrightarrow \Delta x \leq \Delta y$ (5) $\Delta x < x''$ (6) $\Delta x' = x'$ (7) $\Delta \Delta x = \Delta x$

In [4], [5], for every SBL-algebra, it is an SBL_{\neg}-algebra if and only if it satisfies $(\neg 1)$ and $(\neg 3)$. We can show that the result also holds in the case of RL-algebras. This result generalizes the one obtained in [4], [5].

Theorem 4. For every SRL-algebra, if it is an SRL_{\neg} -algebra if and only if it satisfies the axioms $(\neg 1)$ and $(\neg 3)$.

Moreover we see that $(\neg 6)$ is derived from $(\neg 2)$.

Proposition 5. For any SRL₇-algebra which is defined by $(\neg 1)$ and $(\neg 3)$. we have

(a)
$$(\neg 2) \iff \Delta x \le x$$
 and
(b) $(\neg 6) \iff \Delta x \le x''.$

Thus $(\neg 6)$ can be obtained from $(\neg 2)$

Corollary 6. For every SMTL-algebra, it is an $SMTL_{\neg}$ -algebra if and only if it satisfies $(\neg 1)$ and $(\neg 3)$.

Theorem 7. For every SRL_{\neg} -algebra L, the following conditions are equivalent:

- (1) Δ is an identity map;
- (2) Δ is a homomorphism;
- (3) $\Delta(x \to y) = \Delta \to \Delta y;$ (4) $(\Delta x)' = \Delta x';$

(4)
$$(\Delta x)' = \Delta x$$

(5) $\neg x = x';$

- (6) $x \odot \neg x = 0;$
- (7) L is a Boolean algebra, $\odot = \land$ and $\neg ='$

References

- [1] D.Ciucci : On the axioms of residuated structures : Independence, dependences and rough approximations, Fundamenta Informaticae vol. 69(2006), 359-387.
- [2] F.Esteva and L.Godo : Monoidal t-norm based logic, Fuzzy Sets and Systems vol.124 (2001), 271-288.
- [3] F.Esteva, L.Godo, P.Hájek and M.Navara : Residuated fuzzy logics with an involutive negation, Archive for Math. Logic vol.39 (2003), 103-124.
- [4] R.Halaš : A note on axiom system for SBL_¬-algebras, Fundamenta Informaticae vol. 90(2009), 87-92
- [5] F.Svrcek : On the axiomatic system of SBL_¬-algebras, Fund. Inform., to appear