Anti-inverse Subsemigroups of the Full Transformation Semigroup

Ilinka Dimitrova
e-mail: ilinka_dimitrova@yahoo.com
South-West University, Blagoevgrad, Bulgaria

Jörg Koppitz ${ }^{\star}$
e-mail: koppitz@rz.uni-potsdam.de
Potsdam University, Germany

The notion of anti-inverse elements in a semigroup was introduced by J.C. Sharp in 1977 ([6]). In [2], Bogdanović, Milić, and Pavlović studied the structure and considered some properties of those semigroups. In 1982, the anti-inverse semigroups were studied by Blagojevich ([1]). An element a of a semigroup S is called anti-inverse if there exists an element $b \in S$ such that $a b a=b$ and $b a b=a$ (in this case a and b are called mutual anti-inverse). The semigroup S is called anti-inverse if each element of S is anti-inverse.

For particular classes of semigroups, the anti-regular elements are studied (see [2], [6]). Clearly, each band is anti-inverse because of the idempotent low. Moreover, each element of a band has a unique anti-inverse element. An abelian group is anti-inverse if and only if each element is inverse to itself. But not each group is anti-inverse. An abelian semigroup S is anti-inverse if and only if $x=x^{3}$ for each element $x \in S$.

We want to initiate the study of anti-inverse transformation semigroups. Here, we characterize the anti-inverse elements of the full transformation semigroup T_{n}. A \mathcal{J}-class in T_{n} consists of all transformations with the same rank. Moreover, we determine all anti-inverse semigroups in the \mathcal{J}-classes. Let note that the semigroup of all order-preserving (order-preserving or order-reversing) transformations as well as the semigroup of all orientation-preserving (orientation-preserving or orientation-reversing) transformations are of particular interest (see for example [3], [4], [5]). In order to illustrate our result, we will describe the anti-inverse semigroups within the \mathcal{J}-classes of these transformation semigroups. The last part is devoted semigroups with elements of order 2 . We give a description of its maximal anti-inverse subsemigroups containing particular transformations with rank ≤ 3.

We will try to keep the standard notation. Let $X_{n}=\{1<\cdots<n\}$ be a finite chain with n - elements. The full transformation semigroup T_{n} is the set of all mappings, written on the right, of X_{n} into itself with the composition of mappings as multiplication. For every transformation $\alpha \in T_{n}$, by $\operatorname{ker} \alpha$ and $i m \alpha$ we denote the kernel and the image of α, respectively.

Each \mathcal{J}-class of T_{n} has the form

$$
J_{k}:=\left\{\alpha \in T_{n}:|i m \alpha|=k\right\} \text { for } 1 \leq k \leq n .
$$

For $1 \leq k \leq n$ let us denote by Λ_{k} the collection of all subsets of X_{n} of cardinality k. Let $A \in \Lambda_{k}$ and let π be an equivalence relation on X_{n} with
$\left|X_{n} / \pi\right|=k$. We say that A is a transversal of π if $|A \cap \bar{x}|=1$ for every equivalence class \bar{x} of π. Also we may write $A \# \pi$.

An \mathcal{H}-class of an element $\alpha \in T_{n}$ consists of all transformations with the same image and the same kernel as α and will be denoted by H_{α}. Let U be a subset of T_{n}. We denote by $E(U)$ the set of all idempotents in the set U.

Let $\alpha \in T_{n}$ be an anti-inverse element. Then there exists an element $\beta \in T_{n}$ such that $\alpha \beta \alpha=\beta$ and $\beta \alpha \beta=\alpha$. These equations imply $\operatorname{im\alpha }=\operatorname{im} \beta$, ker $\alpha=$ $\operatorname{ker} \beta$, and $i m \alpha \# \operatorname{ker} \beta$. Therefore, we have that $\alpha, \beta \in H_{\alpha}$ and H_{α} contains an idempotent.

Definition 1. For $\varepsilon \in E\left(T_{n}\right)$ we put
$H_{\varepsilon}^{*}:=\left\{\alpha \in H_{\varepsilon}:\right.$ there is a $\beta \in H_{\varepsilon}$ with $\left.\alpha^{4}=\beta^{4}=\alpha^{2} \beta^{2}=\alpha \beta \alpha \beta^{3}=\varepsilon\right\}$.
Proposition 2. Let S be a subsemigroup of T_{n}. Then S is an anti-inverse semigroup if and only if $S \subseteq \bigcup\left\{H_{\varepsilon}^{*}: \varepsilon \in E\left(T_{n}\right)\right\}$.

Proposition 2 shows that the anti-inverse subsemigroups of T_{n} are Clifford semigroups (completely regular semigroups).

Let $1 \leq k \leq n \in N$ and $S \subseteq J_{k}$. Then S is a semigroup in J_{k} iff there are congruence relations π_{1}, \ldots, π_{r} on X_{n} with $\left|X_{n} / \pi_{i}\right|=k(i=1, \ldots, r)$ and sets $A_{1}, \ldots, A_{s} \in \Lambda_{k}$ such that $A_{j} \# \pi_{i}$ for $1 \leq i \leq r$ and $1 \leq j \leq s$, and $S=\left\{\alpha \in J_{k}: \operatorname{ker} \alpha \in\left\{\pi_{1}, \ldots, \pi_{r}\right\}\right.$ and $\left.i m \alpha \in\left\{A_{1}, \ldots, A_{s}\right\}\right\}$.

Theorem 3. Let $1 \leq k \leq n \in N$ and $S \subseteq J_{k} \subseteq T_{n}$. Then S is an anti-inverse semigroup iff there is a semigroup \widetilde{S} in $E\left(T_{n}\right) \cap J_{k}$ and a semigroup K in H_{ε}^{*} for some $\varepsilon \in \widetilde{S}$ such that $S=\bigcup\{\{\widetilde{\varepsilon} \alpha \widetilde{\varepsilon}: \alpha \in K\}: \widetilde{\varepsilon} \in \widetilde{S}\}$.

A transformation $\alpha \in T_{n}$ is called order-preserving (respectively, orderreversing) if for all $x, y \in X_{n}, x \leq y$ implies $x \alpha \leq y \alpha$ (respectively, $x \alpha \geq y \alpha$).

The set $O_{n}:=\left\{\alpha \in T_{n}: \alpha\right.$ is order-preserving $\}$ forms a subsemigroup of T_{n}, which is called the semigroup of all order-preserving transformations (see [5]).

The set $M_{n}:=\left\{\alpha \in T_{n}: \alpha\right.$ is order-preserving or order-reversing $\}$ forms a subsemigroup of T_{n}, which is called the semigroup of all order-preserving or order-reversing transformations (see [4]).

It is clear that the semigroups O_{n} and M_{n} are regular subsemigroups of T_{n}. Moreover, $O_{n} \subseteq M_{n} \subseteq T_{n}$. Let $\alpha \in M_{n}$. Then the (ker α) - classes are convex subsets C of X_{n}, in the sense that $x, y \in C$ and $x \leq z \leq y$ together imply that $z \in C$.
Let $1 \leq k \leq n \in N$ and $\varepsilon \in E\left(T_{n}\right) \cap J_{k}$ with
$\varepsilon=\left(\begin{array}{ccc}\bar{x}_{1} & \ldots & \bar{x}_{k} \\ a_{1} & \ldots & a_{k}\end{array}\right)$ and $a_{1}<\cdots<a_{k}$. Then we put
$\varepsilon^{a}:=\left(\begin{array}{ccc}\bar{x}_{1} & \ldots & \bar{x}_{k} \\ a_{k} & \ldots & a_{1}\end{array}\right)$, i.e. $\bar{x}_{i} \varepsilon^{a}=a_{k-i+1}$ for $1 \leq i \leq k$. Clearly, $\left(\varepsilon^{a}\right)^{2}=\varepsilon$.
Proposition 4. Let $1 \leq k \leq n \in N$ and $S \subseteq J_{k} \subseteq M_{n}$. Then S is an antiinverse semigroup iff there is a semigroup \widetilde{S} in $E\left(T_{n}\right) \cap J_{k}$ such that $S=\widetilde{S}$ or $S=\bigcup\left\{\left\{\varepsilon, \varepsilon^{a}\right\}: \varepsilon \in \widetilde{S}\right\}$.

Corollary 5. Let $1 \leq k \leq n \in N$ and $S \subseteq J_{k} \subseteq O_{n}$. Then S is an anti-inverse semigroup iff S is a semigroup in $E\left(T_{n}\right) \cap J_{k}$.

Now, let $a=\left(a_{1}, a_{2}, \ldots, a_{t}\right)$ be a sequence of $t(t \geq 1)$ elements from the chain X_{n}. We say that a is cyclic (respectively, anti-cyclic) if there exists no more than one index $i \in\{1, \ldots, t\}$ such that $a_{i}>a_{i+1}$ (respectively, $a_{i}<a_{i+1}$), where a_{t+1} denotes a_{1}. A transformation $\alpha \in T_{n}$ is called orientation-preserving (respectively, orientation-reversing) if the sequence of its images is cyclic (respectively, anticyclic).

The set $O P_{n}:=\left\{\alpha \in T_{n}: \alpha\right.$ is orientation-preserving $\}$ forms a subsemigroup of T_{n}, which is called the semigroup of all orientation-preserving transformations (see [3]).

The set $O P R_{n}:=\left\{\alpha \in T_{n}: \alpha\right.$ is orientation-preserving or orientation-reversing \} forms a subsemigroup of T_{n}, which is called the semigroup of all orientationpreserving or orientation-reversing transformations (see [4]). Moreover, we put $O R_{n}:=O P R_{n} \backslash O P_{n}$.

Let $\alpha \in O P R_{n}$. Then for all $\bar{x} \in X_{n} /$ ker α, the set \bar{x} or $X_{n} \backslash \bar{x}$ is convex. Let $1 \leq k \leq n \in N$ and $\varepsilon \in E\left(T_{n}\right) \cap J_{k}$ with
$\varepsilon=\left(\begin{array}{ccc}\bar{x}_{1} & \cdots & \bar{x}_{k} \\ a_{1} & \cdots & a_{k}\end{array}\right)$ where $a_{1}<\cdots<a_{k}$.
If $k \in 2 N$ then we put ε^{\prime} as the orientation-preserving transformation in H_{ε} with

$$
\bar{x}_{p} \varepsilon^{\prime}=\left\{\begin{array}{lll}
a_{p+\frac{k}{2}} & \text { if } & 1 \leq p \leq \frac{k}{2} \\
a_{p-\frac{k}{2}} & \text { if } & \frac{k}{2}<p \leq k .
\end{array}\right.
$$

Clearly, $\left(\varepsilon^{\prime}\right)^{2}=\varepsilon$. If k is odd then $H_{\varepsilon}^{*}=\{\varepsilon\}$. If $k \in 2 N$ then $H_{\varepsilon}^{*}=\left\{\varepsilon, \varepsilon^{\prime}\right\}$.
Proposition 6. Let $1 \leq k \leq n \in N$ and $\underset{\widetilde{S}}{\subseteq} \subseteq J_{k} \subseteq O P R_{n}$. Then S is an antiinverse semigroup iff there is a semigroup $\widetilde{S} \subseteq E\left(T_{n}\right) \cap J_{k}$ such that
(i) $S=\widetilde{S}$ or
(ii) $S=\bigcup\{\{\varepsilon, \varepsilon \alpha \varepsilon\}: \varepsilon \in \widetilde{S}\}$ for some $\alpha \in O R_{n} \cap H_{\varepsilon_{\alpha}}^{*}$ with $\varepsilon_{\alpha} \in \widetilde{S}$ or
(iii) $S=\bigcup\left\{\left\{\varepsilon, \varepsilon^{\prime}\right\}: \varepsilon \in \widetilde{S}\right\}$ and k is even or
(iv) $S=\bigcup\left\{\left\{\varepsilon, \varepsilon^{\prime}, \varepsilon \alpha \varepsilon, \varepsilon \alpha \varepsilon_{\alpha}^{\prime} \varepsilon\right\}: \varepsilon \in \widetilde{S}\right\}$ for some $\alpha \in O R_{n} \cap H_{\varepsilon_{\alpha}}^{*}$ where $\varepsilon_{\alpha} \in \widetilde{S}$ and k is even.

Corollary 7. Let $1 \leq k \leq n \in N$ and $S \subseteq J_{k} \subseteq O P_{n}$. Then S is an anti-inverse semigroup iff there is a semigroup $\widetilde{S} \subseteq E\left(T_{n}\right) \cap J_{k}$ such that
(i) $S=\widetilde{S}$ or
(ii) $S=\bigcup\left\{\left\{\varepsilon, \varepsilon^{\prime}\right\}: \varepsilon \in \widetilde{S}\right\}$ and k is even.

References

[1] Blagojevich Dr., More on Anti-inverse Semigroups, Publications de L'institut Mathematique, 31(45)(1982), 9-13.
[2] Bogdanovich St., Sv. Milich, V. Pavlovich, Anti-inverse Semigroups, Publications de L'institut Mathematique, 24(38)(1978), 19-28.
[3] Catarino, P.M., P.M. Higgins, The monoid of orientation-preserving mappings on a chain, Semigroup Forum, 58 (1999), 190-206.
[4] Fernandes, V.H., G.M.S. Gomes, M.M. Jesus, Presentations for Some Monoids of Partial Transformations on a Finite Chain, Communications in Algebra, 33(2005), 587-604.
[5] Howie, J.M., Products of idempotents in certain semigroups of transformations, Proc. Edinburgh Math. Soc. (2)17(1971), 223-236.
[6] Sharp J.C., Anti-regular Semigroups, Notices Amer. Math. Soc. 24(2)(1977), pp-A-266.

