A category of *L*-Chu correspondences and Galois functor

Ondrej Krídlo*

e-mail: o.kridlo@gmail.com University of P.J. Šafárik, Košice, Slovakia

Stanislav Krajči

e-mail: stanislav.krajci@upjs.sk University of P.J. Šafárik, Košice, Slovakia

An *L*-fuzzy Formal Concept Analysis (FCA) provides new space for research of categorical properties of FCA. This presentation will show some differences of categorical properties of classical FCA and *L*-fuzzy FCA.

Main notion of FCA is a formal context and formal concept. L-fuzzy extension of FCA was provided by Bělohlávek [1].

Definition 1. Let L be a complete residuated lattice, an L-fuzzy formal context is a triple $\langle B, A, r \rangle$ consisting of a set of objects B, a set of attributes A and an L-fuzzy binary relation r, i.e. a mapping from $r: B \times A$ to L, which can be alternatively understood as an L-fuzzy subset of $B \times A$

Definition 2. A complete residuated lattice is an algebra $(L, \land, \lor, \otimes, \rightarrow, 0, 1)$ where

- (1) $\langle L, \wedge, \vee, 0, 1 \rangle$ is a lattice with the least element 0 and the greatest element 1,
- (2) $\langle L, \otimes, 1 \rangle$ is a commutative monoid,
- (3) \otimes and \rightarrow are adjoint, i.e. $a \otimes b \leq c$ if and only if $a \leq b \rightarrow c$, for all $a, b, c \in L$ (\leq is the lattice ordering generated from \land and \lor).

Definition 3. Consider an L-fuzzy context $\langle B, A, r \rangle$. A pair of mappings $\uparrow: L^B \to L^A$ and $\downarrow: L^A \to L^B$ is defined as follows:

$$\uparrow (f)(a) = \bigwedge_{o \in B} (f(o) \to r(o, a))$$
$$\downarrow (g)(o) = \bigwedge_{a \in A} (g(a) \to r(o, a)).$$

for every $f \in L^B$ and $g \in L^A$.

Bělohlávek also proved that the pair of mappings $\langle \uparrow \downarrow \rangle$ forms a Galois connection between the complete lattices of all *L*-subsets of the set of objects and attributes.

Definition 4. An *L*-fuzzy concept is a pair $\langle f, g \rangle$ such that $\uparrow f = g, \downarrow g = f$. The first component f is said to be the **extent** of the concept, whereas the second component g is the **intent** of the conce pt.

The set of all *L*-fuzzy concepts associated to a fuzzy context $\langle B, A, r \rangle$ will be denoted as $CL_L(B, A, r)$.

An ordering between *L*-fuzzy concepts is defined as follows: $\langle f_1, g_1 \rangle \leq \langle f_2, g_2 \rangle$ if and only if $f_1 \subseteq f_2$ if and only if $g_1 \supseteq g_2$.

L-fuzzy extension of main theorem on concept lattices.

Theorem 5. $CL_L(B, A, r) = \{ \langle f, g \rangle | \uparrow (f) = g, \downarrow (g) = f \}$ is under $\leq (\langle f_1, g_1 \rangle \leq \langle f_2, g_2 \rangle$ iff $f_1 \subseteq f_2$ iff $g_1 \supseteq g_2 \rangle$ a complete lattice where

$$\bigwedge_{j\in J} \langle f_j, g_j \rangle = \Big\langle \bigwedge_{j\in J} f_j, \uparrow \big(\bigwedge_{j\in J} f_j\big) \Big\rangle,$$
$$\bigvee_{j\in J} \langle f_j, g_j \rangle = \Big\langle \downarrow \big(\bigwedge_{j\in J} g_j\big), \bigwedge_{j\in J} g_j \Big\rangle.$$

Hence \uparrow and \downarrow are dual isomorphisms between the lattices of $\uparrow \downarrow$ -closed L-fuzzy sets in A and $\downarrow \uparrow$ -closed L-fuzzy sets in B.

Hideo Mori in [4] defined so called *Chu correspondences* as a pair of mappings between two formal contexts. In [3] is showed an L-fuzzy extension of Chu correspondences between two L-fuzzy contexts.

Definition 6. Consider two *L*-fuzzy contexts $C_i = \langle B_i, A_i, r_i \rangle$, (i = 1, 2), then the pair $\varphi = (\varphi_l, \varphi_r)$ is called a **correspondence** from C_1 to C_2 if φ_l and φ_r are *L*-multifunctions, respectively, from B_1 to B_2 and from A_2 to A_1 (that is, $\varphi_l : B_1 \to L^{B_2}$ and $\varphi_r : A_2 \to L^{A_1}$).

The *L*-correspondence φ is said to be a **weak** *L*-Chu correspondence if the equality $\hat{r}_1(\chi_{o_1}, \varphi_r(a_2)) = \hat{r}_2(\varphi_l(o_1), \chi_{a_2})$ holds for all $o_1 \in B_1$ and $a_2 \in A_2$. By unfolding the definition of $hatr_i$ this means that

(1)
$$\bigwedge_{a_1 \in A_1} (\varphi_r(a_2)(a_1) \to r_1(o_1, a_1)) = \bigwedge_{o_2 \in B_2} (\varphi_l(o_1)(o_2) \to r_2(o_2, a_2))$$

A weak Chu correspondence φ is an *L*-Chu correspondence if $\varphi_l(o_1)$ is closed in C_2 and $\varphi_r(a_2)$ is closed in C_1 for all $o_1 \in B_1$ and $a_2 \in A_2$.

Mori also proved that all Chu correspondences between two formal contexts with a multifunctional ordering form a complete lattice. Same fact about *L*-Chu correspondences is proved in [3]. Mori showed a category of Chu correspondences between for mal contexts so called ChuCors. Mori also defined a Galois functor from ChuCors to Slat a category of *supremum preserving mappings between complete lattices* and showed that the functor is full, faithfull and equivalence functor between n ChuCors and Slat.

L-Chu correspondeces between L-contexts form a category so called L-ChuCors. L-Galois functor is an L-fuzzy extended Galois functor applicable on L-ChuCors, such that to every L-context assigns its L-concept lattice and to every L-Chu correspondence assigns a supremum preserving mapping. My future work is to show fullness and faithfulness of L-Galois functor similarly as Mori's classical one. A difference between L-fuzzy case and classical case of this categorical view on FCA is in equivalence between ChuCors and Slat and non-equivalence between L-ChuCors and Slat.

The support of the grant VEGA 1/0131/09 is kindly announced.

References

- R. Bělohlávek. Lattices of fixed points of fuzzy Galois connections. Mathematical Logic Quartely, 47(1):111–116, 2001.
- [2] B. Ganter and R. Wille. Formal concept analysis. Springer-Verlag, 1999.
- [3] O. Kridlo, M. Ojeda-Aciego, On the L-fuzzy generalization of Chu correspondences, Accepted to International Journal of Computer Mathematics, Taylor and Francis.
- [4] H. Mori. Chu Correspondences. Hokkaido Matematical Journal, 37:147-214, 2008