On aksiomatizability of a class of d - MP-modules

Ivanna Melnyk

e-mail: ivannamelnyk@yahoo.com Ivan Franko National University of Lviv, Ukraine

d-MP-rings were introduced by H. Gorman [1] as differential rings for which the radical of every differential ideal is differential. Maximal among differential ideals of d-MP-rings are prime. d-MP-ring properties we re further studied by A. Nowicki [2]. W. Keigher [3] introduced so called special differential rings and proved they are equivalent to d-MP-rings. The concept of d-MP-module evolved quite naturally from the concept of d-MP-ring.

Unless otherwise specified, all rings are assumed to be associative with nonzero identity, and all modules are unitary left modules. By ideal we always mean a two-sided ideal. The term *differential ring* will refer to a ring R endowed with the set $\Delta = \{\delta_1, \delta_2, \ldots, \delta_n\}$ of n pairwise commutative ring derivations $\delta_i \colon R \to R$. In what follows, M denotes a left *differential R-module*; the differential structure on M is defined by the set $D = \{d_1, d_2, \ldots, d_n\}$ of pairwise commutative module derivations $d_i \colon M \to M$, consistent with the corresponding ring derivations. Assume that at least one derivation of Δ and D is nontrivial.

For $r \in R$, $m \in M$ we use the following notations:

 $r^{(i_1,\dots,i_n)} = (\delta_1^{i_1} \circ \dots \circ \delta_n^{i_n})(r), \quad m^{(i_1,\dots,i_n)} = (d_1^{i_1} \circ \dots \circ d_n^{i_n})(m), \quad r^{(\infty)} = \{r^{(i_1,\dots,i_n)}|i_1,i_2,\dots,i_n \in \mathbb{N} \cup \{0\}\}, \quad m^{(\infty)} = \{m^{(i_1,\dots,i_n)}|i_1,i_2,\dots,i_n \in \mathbb{N} \cup \{0\}\}.$

Let [r] be the least differential ideal containing $r \in R$, and let [m] be the least differential submodule containing $m \in M$. Note that $[r] = (r^{(\infty)}), [m] = (m^{(\infty)}).$

If X is an arbitrary subset of the differential R-module M, denote

$$X_{\#} = \{ x \in M | x^{(i_1, i_2, \dots, i_n)} \in X, \quad \forall i_1, i_2, \dots, i_n \in \mathbb{N} \cup \{0\} \}.$$

The operator $()_{\#}$ has the following properties: $X_{\#}$ is differentially closed for any subset X of M; the union and the intersection of any family of differentially closed subsets is differentially closed; finite products and sums of differentially closed subsets are differentially closed; images and preimages of differentially closed subsets under differential homomorphisms are differentially closed; for any subset X of D-module M, $X_{\#}$ is the largest differentially closed subset of M contained in X.

A differential R-module M is called d-MP-module if for any prime differential submodule N of M the submodule $N_{\#}$ is a prime differential submodules of M.

For a d-MP-module M the following conditions are equivalent [6]:

1. any quasi-prime submodule N of M is prime;

2. any quasi-prime submodule N of M is radical, i. e. rad(N) = N;

3. any prime submodule, minimal over some differential submodule, is differential;

4. radical of each differential submodule is a differential submodule.

It is therefore easy to see that in a d-MP-module maximal among differential submodules are prime, which explains the term d-MP.

A differential R-module M is called *differentially prime* [6] if $\operatorname{Ann}_l(N) = \operatorname{Ann}_l(M)$ for every nonzero differential submodule N of M. A differential submodule N of M is called *differentially prime* [6] if M/N is differentially prime.

Let S be a dm-system of R. A non-empty subset S^* of the differential module M over R is called an Sdm-system of the module M [6] if for any $s \in S$ and $x \in X$ there exist $r \in R$ and $i_1, i_2, \ldots, i_n \in \mathbb{N} \cup \{0\}$, $n \in \mathbb{N}$ such that $srx^{(i_1, i_2, \ldots, i_n)} \in S^*$. If all the module derivations are trivial, we obtain the notion of an Sm-system of a module over non-commutative ring. For a regular differential module the above concept transforms into dm-system, which is introduced in [4].

A differential submodule \mathcal{N} of a differential module M is differentially prime if and only if $M \setminus \mathcal{N}$ is an Sdm-system of M for some dm-system S of the ring R. A differential submodule \mathcal{P} of the differential module M is differentially prime if and only if $IN \subseteq \mathcal{P}$ follows $N \subseteq \mathcal{P}$ or $I \subseteq \operatorname{Ann}_l(M/\mathcal{P})$ for every differential ideal I and every differential submodule N of M. The latter condition is equivalent to $[r][m] \subseteq \mathcal{P}$ follows $m \in \mathcal{P}$ or $r \in \operatorname{Ann}_l(M/\mathcal{P})$ for any $r \in R$ and $m \in M$. (see [6])

A differential submodule \mathcal{Q} of the differential *R*-module *M* is called *quasi-prime* if there exists an Sm-system S^* of *M* such that \mathcal{Q} is a maximal among the differential submodules of *M* not meeting S^* .

Theorem 1. A differential R-module M is a d-MP-module if and only of its localization M_p is a d-MP-module for every prime differential ideal p of the ring R.

Theorem 2. If every differentially prime submodule of the differential module M is prime, then the module M is a d-MP-module.

Let I be an infinite set, and let \mathcal{U} be a nonprincipal ultrafilter over I. Suppose that for each $i \in I$ N_i is a submodule of the differential R_i -module M_i , then one can construct a submodule of $\prod_{i \in I} N_i / \mathcal{U}$ of the ultraproduct $\prod_{i \in I} M_i / \mathcal{U}$, which is an ultraproduct of a family of submodules $\{N_i\}_{i \in I}$ with respect to \mathcal{U} [4].

Theorem 3. The ultraproduct of any family of d - MP-modules with respect to the nonprincipal ultrafilter is a d - MP-module.

Theorem 4. The class of d - MP-modules is axiomatizable.

References

- [1] Gorman H. Differential rings and modules // Scripta Math. 1973. 29 No. 1-2. P. 25-35.
- [2] Nowicki A., Some remarks on d-MP rings // Bull. Acad. pol. sci., Ser. sci. math. 1982.
 30, No. 7-8. P. 311-317.
- [3] Keigher W. F. Quasi-prime ideals in differential rings // Houston J. Math. 1978. Vol. 4, No 3. – P. 379–388.
- [4] Khadjiev Dj., Çallıalp F., On a differential analog of the prime-radical and properties of the lattice of the radical differential ideals in associative differential rings // Tr. J. of Math. - 1996. - Vol. 20, No 4. - pp. 571-582.
- [5] Lu C.P. Spectra of modules // Comm. Algebra. 1995. Vol. 23. P. 3741–3752.
- [6] Melnyk I. Sdm-systems, differentially prime and differentially primary modules (Ukrainian) // Nauk. visnyk Uzhgorod. Univ. Ser. Math. and informat. 2008. Vol. 16. P. 110–118.