Transitive modes

Yuri M. Movsisyan e-mail: yurimovsisyan@yahoo.com Yerevan State University, Armenia

Ebrahim Nazari* e-mail: nazari_ibrahim2008@yahoo.com Payame Noor University, Gasersherin, Iran

Let us recall that a mode is an idempotent and medial algebra [1],[2]. In this work we study the connection between right (left) invertible medial algebras and right (left) group of binary operations. As a consequence, we prove the structure theorem for transitive modes and get a new characterization of multiplicative groups of fields (Mal'tsev problem).

The set of all binary operations on Q is denoted by \mathcal{F}_Q^2 , and we consider the following two binary operations on this set:

$$A \cdot B(x, y) = A(x, B(x, y)),$$

$$A \circ B(x, y) = A(B(x, y), y),$$

where $A, B \in \mathcal{F}_Q^2$, $x, y \in Q$. These operations are called right and left multiplication of binary operations and they were studied in works of various authors [3]–[9].

The set \mathcal{F}_Q^2 forms a monoid under the right (left) multiplication of binary operations. The mapping, $A \to A^*$, is an isomorphism between semigroups $\mathcal{F}_Q^2(\cdot)$ and $\mathcal{F}_Q^2(\circ)$, where $A^*(x, y) = A(y, x)$. The operation, E(x, y) = y (F(x, y) = x), is an identity element for the semigroup, $\mathcal{F}_Q^2(\cdot)$ (for $\mathcal{F}_Q^2(\circ)$).

The binary operation $A \in \mathcal{F}_Q^2$ is right (left) invertible, if the equation A(a, x) = b (A(y, a) = b) has the unique solution $x \in Q$ ($y \in Q$). The unique solutions x, y are usually denoted by $x = A^{-1}(a, b)$ and $y = {}^{-1} A(b, a)$. Hence, $A \cdot A^{-1} = A^{-1} \cdot A = E$ for the right invertible operation A, and ${}^{-1}A \circ A = A \circ {}^{-1}A = F$ for the left invertible operation A.

For application of right (left) invertible operations in geometry or topology (knot theory) see [10], [11].

The set of all right (left) binary invertible operations on the set Q is denoted by \mathcal{F}_Q^r (and \mathcal{F}_Q^ℓ). The set \mathcal{F}_Q^r (\mathcal{F}_Q^ℓ) is a group under the right (left) multiplication of binary operations. These two groups are also isopmorphic.

The binary algebra $(Q; \Sigma)$ is called right (left) invertible if every operation $A \in \Sigma$ is right (left) invertible.

For $\Sigma \subseteq \mathcal{F}_Q^r$ we denote by (Σ) the subgroup of group $\mathcal{F}_Q^r(\cdot)$ generated by the subset Σ . If $\Sigma \subseteq \mathcal{F}_Q^\ell$, then by $((\Sigma))$ is denoted the subgroup of the group $\mathcal{F}_Q^\ell(\circ)$ generated by subset Σ .

Theorem 1. If the right invertible algebra $(Q; \Sigma)$ is a medial (mode), then the extended algebra $(Q; (\Sigma))$ is also medial (mode).

Theorem 2. If the left invertible algebra $(Q; \Sigma)$ is medial (mode) then the extended algebra $(Q; ((\Sigma)))$ is also medial (mode).

Following [6], we define the binary algebra $(Q; \Sigma)$, with $E, F \in \Sigma$, to be transitive, if the following conditions are valid:

- a) $|Q| \ge 2;$
- b) for every $a, b, c \in Q$, where $b \neq a \neq c$, there exists the operation $A \in \Sigma \setminus \{F\}$ such that A(a, b) = c;
- c) $(Q; \Sigma \setminus \{F\})$ is a right invertible algebra.

Example 3. If |Q| = 2 and $\Sigma = \{E, F\}$, then $(Q; \Sigma)$ is a transitive mode.

Example 4. If $Q(\cdot)$ is a nontrivial abelian group and

$$\Sigma^{0} = \{ A_{q} | A_{q}(x, y) = y \cdot q, \ q \in Q, \ x, y \in Q \} \,,$$

 $\Sigma = \Sigma^0 \cup \{F\}$, then $(Q; \Sigma)$ is a medial transitive algebra, but $(Q; \Sigma)$ is not a mode.

Example 5. If $Q(+, \cdot)$ is a field with an identity element, $e \in Q$,

$$\Sigma = \{A_q | A_q(x, y) = qx + (e - q)y, q \in Q, x, y \in Q\},\$$

or

$$\Sigma = \{A_q | A_q(x, y) = (e - q)x + qy, q \in Q, x, y \in Q\},\$$

then $(Q; \Sigma)$ is a transitive mode.

Using the above-mentioned results, we prove a structure theorem for transitive modes.

As a consequence, we get a new characterization of multiplicative groups of fields.

References

- [1] Romanowska A.B., Smith J.D.H., Modes, Singapore: World Scientific, 2002.
- [2] Jezek J., Kepka T., Medial groupoids, Praha, 1983.
- [3] Stein S.K., On the foundation of quasigroups, Trans. Amer. Math. Soc. 85(1957), 228-256.
- [4] Urbanik K., On algebraic operations in idempotent algebras, Colloquium Math. XIII(1965), 129-157.
- [5] Belousov V.D., Systems of quasigroups with generalized identities, Uspekhi. Mat. Nauk 20(1965), 75-146 [English transl. in Russian Math. Surveys 20(1965), 73-143].
- [6] Movsisyan Yu.M., Multiplicative group of a field and hyperidentities, Izv. AN SSSR Ser. Mat. 53(5), 1989, 1040-1055 [English transl. in Math. USSR, Izvestiya 35(1990), 377-391].
- [7] Movsisyan Yu.M., Hyperidentities in algebras and varieties, Uspekhi Mat. Nauk 53(1), 1998, 61-114 [English transl. in Russian Math. Surveys 53(1), 1998, 57-108].
- [8] Movsisyan Yu.M., Binary representations of algebras with at most two binary operations. A Cayley theorem for distributive lattices, International Journal of Algebra and Computation, Vol. 19, N1(2009), 97-106.
- [9] Bloom S.L., Esik Z., Manes E.G., A cayley theorem for Boolean algebras, Amer. Math. Monthly 97(1900), 831-833.
- [10] Pambuccian V., Euclidean geometry problems rephrased in terms of midpoints and pointreflections, Elem. Math., 60(2005), 19-24.
- [11] Matveev S.V., Distributive groupoids in knot theory, Mat. Sb. 119(1), 1982, 78-88 [English transl. in Mathematics of the USSR-Sbornik,47(1),1984].

-2 -