Free modals

Agata Pilitowska* e-mail: apili@mini.pw.edu.pl Warsaw University of Technology, Poland

Anna Zamojska-Dzienio

e-mail: a.zamojska@elka.pw.edu.pl Warsaw University of Technology, Poland

Algebras considered in this talk are modes and modals. Such algebras were introduced and investigated in details by A. Romanowska and J.D.H. Smith ([2], [3]). *Modes* (M, Ω) are characterized by two basic properties. They are *idempotent*, in the sense that each singleton is a subalgebra, and *entropic*, i.e. any two of its operation commute. The two properties may also be expressed by means of identities:

$$\omega(x, \dots, x) \approx x, \quad (\text{idempotent law}),$$
$$\omega(\phi(x_{11}, \dots, x_{n1}), \dots, \phi(x_{1m}, \dots, x_{nm})) \approx$$
$$\phi(\omega(x_{11}, \dots, x_{1m}), \dots, \omega(x_{n1}, \dots, x_{nm})), \quad (\text{entropic law}),$$

for every *n*-ary $\omega \in \Omega$ and *m*-ary $\phi \in \Omega$.

An operation ω on a set A is said to distribute over a binary operation + if and only if for any $1 \leq i \leq n$ and elements $x_1, \ldots, x_i, y_i, \ldots, x_n \in A$:

(1)
$$\omega(x_1, \dots, x_i + y_i, \dots, x_n) = \omega(x_1, \dots, x_i, \dots, x_n) + \omega(x_1, \dots, y_i, \dots, x_n).$$

A modal is an algebra $(M, \Omega, +)$ such that (M, Ω) is a mode, (M, +) is a (join) semilattice (with semilattice order \leq , i.e. $x \leq y \Leftrightarrow x+y=x$) and the operations $\omega \in \Omega$ distribute over +. The name "modal" was intended both to refer to the relationship with modes and to suggest the analogy with modules. Examples of modals include distributive lattices, dissemilattices - algebras $(M, \cdot, +)$ with two semilattice structures (M, \cdot) and (M, +) in which the operation \cdot distributes over the operation +, and the algebra $(\mathbb{R}, \underline{I}^0, max)$ defined on the set of real numbers, where \underline{I}^0 is the set of the following binary operations: $\underline{p} : \mathbb{R} \times \mathbb{R} \to \mathbb{R}$; $(x, y) \mapsto (1 - p)x + py$, for each $p \in (0, 1) \subset \mathbb{R}$.

Given a mode variety \mathcal{V} , a modal $(M, \Omega, +)$ is called \mathcal{V} -modal if its mode reduct (M, Ω) lies in \mathcal{V} . A. Romanowska and J.D.H. Smith ([2], [3]) described the free \mathcal{V} -modals in the case \mathcal{V} is the variety of modes defined by linear identities (We call a term *t linear*, if every variable occurs in *t* at most once. An identity $t \approx u$ is called *linear*, if both terms *t* and *u* are linear.). The main aim of this talk is to describe the free object in arbitrary varieties of modals.

For a given set M let us denote by $\wp(M)$ the family of all non-empty subsets of M. For any *n*-ary operation $\omega : M^n \to M$ we define the complex operation $\omega : \wp(M)^n \to \wp(M)$ in the following way:

$$\omega(A_1,\ldots,A_n) := \{\omega(a_1,\ldots,a_n) \mid a_i \in A_i\},\$$

$$-1 -$$

where $\emptyset \neq A_1, \ldots, A_n \subseteq M$. The power (complex or global) algebra of an algebra (M, Ω) is the algebra $(\wp(M), \Omega)$.

As it was shown by A. Romanowska and J.D.H. Smith in [2], for a given mode (M, Ω) , the sets MS of non-empty subalgebras and MP of finitely generated non-empty subalgebras of (M, Ω) have a mode structure under the ω -complex products satisfying each linear identity true in (M, Ω) . Moreover, modes (MS, Ω) and (MP, Ω) are subalgebras of power algebra $(\wp(M), \Omega)$.

A. Romanowska and J.D.H. Smith also proved that for a given mode (M, Ω) , sets MS and MP have an additional (join) semilattice structure + obtained by setting

$$A_1 + A_2 := \langle A_1 \cup A_2 \rangle,$$

for any $A_1, A_2 \in MS$, where $\langle X \rangle$ denotes the subalgebra of (M, Ω) generated by the set X.

These two structures, mode and semilattice, are related by distributive laws (1). In this way, we obtain algebras $(MS, \Omega, +)$ and $(MP, \Omega, +)$ that provide basic examples of modals.

Let \mathcal{V} be a variety of Ω -modes and let $\mathcal{M}_{\mathcal{V}}$ denote the variety of all \mathcal{V} -modals.

Theorem 1. Let X be a set. For any variety \mathcal{V} of modes, the modal $(F_{\mathcal{V}}(X)P, \Omega, +)$ of finitely generated non-empty subalgebras of the free \mathcal{V} -mode over X, has the universal mapping property for $\mathcal{M}_{\mathcal{V}}$ over X.

Note that if $(F_{\mathcal{V}}(X)P, \Omega, +) \in \mathcal{M}_{\mathcal{V}}$, then it is, up to isomorphism, the unique algebra in $\mathcal{M}_{\mathcal{V}}$ with the universal mapping property freely generated by a set X.

Corollary 2. Let \mathcal{V} be a variety of Ω -modes. The modal $(F_{\mathcal{V}}(X)P, \Omega, +)$ is free over a set X in the variety $\mathcal{M}_{\mathcal{V}}$ if and only if $(F_{\mathcal{V}}(X)P, \Omega, +) \in \mathcal{M}_{\mathcal{V}}$.

For a variety \mathcal{V} of modes let \mathcal{V}^* be its *linearization*, the idempotent variety defined by the linear identities satisfied in \mathcal{V} . Obviously, \mathcal{V}^* is a variety of modes, and contains \mathcal{V} as a subvariety.

It is well known (see for example [3]) that for any variety \mathcal{V} of modes, the variety generated by the class $\{(AS, \Omega) \mid (A, \Omega) \in \mathcal{V}\}$ is included in \mathcal{V}^* . So by Corollary 2 we immediately obtain the following result proved earlier by A. Romanowska and J.D.H. Smith.

Theorem 3. [2] Let \mathcal{V} be a variety of modes. The modal $(F_{\mathcal{V}^*}(X)P, \Omega, +)$ is free over a set X in the variety $\mathcal{M}_{\mathcal{V}^*}$.

Let \mathcal{V} be a variety of Ω -modes, $\mathcal{M} \subseteq \mathcal{M}_{\mathcal{V}}$ a (non-trivial) variety of modals and X be a set. Define the congruence

$$\Theta(X) := \bigcap \{ \phi \in Con(F_{\mathcal{V}}(X)P, \Omega, +) \mid (F_{\mathcal{V}}(X)P, \Omega, +)/\phi \in \mathcal{M} \}.$$

Theorem 4. The algebra $(F_{\mathcal{V}}(X)P, \Omega, +)/\Theta(X)$ is free over a set X in \mathcal{M} .

Corollary 5. If the algebra $(F_{\mathcal{V}}(X)P, \Omega, +) \in \mathcal{M}$, then it is free in \mathcal{M} over a set X.

Let $(M, \Omega, +)$ be a modal generated by a set $X \subseteq M$. Denote by $\langle X \rangle_{\Omega}$ the subalgebra of Ω -reduct (M, Ω) generated by the set X. The algebra $(\langle X \rangle_{\Omega}, \Omega)$ is

necessarily a submode of (M, Ω) and contains all elements from $(M, \Omega, +)$ obtained as results of term operations of Ω only. We will call it the *full* Ω -mode subreduct of a modal $(M, \Omega, +)$.

Let \mathcal{MV} denote the class of all modals for which there exists a set of generators such that their full Ω -mode subreduct lies in \mathcal{V} .

It is well known that the subreducts of algebras in a given quasivariety again form a quasivariety. (See [1].) Let \mathcal{Q} be a quasivariety of Γ -algebras of a given type $\tau : \Gamma \to \mathbb{N}$. Let $\mathfrak{B}\Gamma$ be a set of *derived operations* or *term operations* of Γ and let $\Omega \subseteq \mathfrak{B}\Gamma$. Consider a quasivariety \mathcal{Q}_{Ω} of Ω -algebras isomorphic to Ω -subreducts of \mathcal{Q} -algebras.

Theorem 6. The free \mathcal{Q}_{Ω} -algebra $(F_{\mathcal{Q}_{\Omega}}(X), \Omega)$ over X is isomorphic to the Ω -subreduct $\langle X \rangle_{\Omega}$, generated by X, of the free \mathcal{Q} -algebra $(F_{\mathcal{Q}}(X), \Gamma)$.

Free algebras in a quasivariety \mathcal{Q}_{Ω} are also free in the variety $V(\mathcal{Q}_{\Omega})$ generated by \mathcal{Q}_{Ω} . (see [1])

As a corollary one obtains characterization of free algebras in a quasivariety of Ω -subreducts of modals in a given variety of modals.

Corollary 7. Let \mathcal{M} be a variety of modals. Let \mathcal{M}_{Ω} be a quasivariety of Ω -subreducts of modals in \mathcal{M} . Then the free \mathcal{M}_{Ω} - mode $(F_{\mathcal{M}_{\Omega}}(X), \Omega)$ over X is isomorphic to the full Ω -subreduct $\langle X \rangle_{\Omega}$ of the free \mathcal{M} -modal $(F_{\mathcal{M}}(X), \Omega, +)$.

Note that even if we have a free modal $(F_{\mathcal{M}}(X), \Omega, +)$ in given variety $\mathcal{M} \subseteq \mathcal{MV}$, its full Ω -subreduct $(\langle X \rangle_{\Omega}, \Omega)$ needn't be a free algebra in \mathcal{V} .

Corollary 8. For any variety \mathcal{V} of modes,

$$\mathcal{M}_{\mathcal{V}} \subseteq \mathcal{M}\mathcal{V} \subseteq \mathcal{M}_{\mathcal{V}^*}.$$

In particular, $\mathcal{MV}^* = \mathcal{M}_{\mathcal{V}^*}$.

In general, the class \mathcal{MV} is not a variety.

Theorem 9. Let \mathcal{V} be a variety of Ω -modes. Each modal $(M, \Omega, +) \in \mathcal{MV}$ generated by a set X is a homomorphic image of $(F_{\mathcal{V}}(X)P, \Omega, +)$.

References

- [1] Malcev A. I.: Algebraic systems, Springer Verlag, New York, 1973.
- [2] Romanowska A. B., Smith J. D. H.: Modal Theory, Heldermann Verlag, Berlin, 1985.
- [3] Romanowska A. B., Smith J. D. H.: Modes, World Scientific, Singapore, 2002.