On the Impicit Algebraic Geometry on the Categories of Universal Algebras

Alexandr G. Pinus

e-mail: ag.pinus@gmail.com Novosibirsk State Technical University, Russia

Let \mathscr{K} be some class of universal algebras of some fixed signature σ and let \mathscr{K} be a category, which objects are \mathscr{K} -algebras and morphisms are (either all or some part of) homomorphisms of some \mathscr{K} -algebras into the others. Let us recall the definition of *n*-ary implicit operation f on the category \mathscr{K} : it is the family of *n*-ary functions $f_{\mathscr{A}}$ on the basic sets of \mathscr{K} -algebras \mathscr{A} which commutes with any \mathscr{K} -morphisms. As $\mathrm{IF}_n(\mathscr{K})$ we denote the family of all *n*-ary implicit operations on the category \mathscr{K} .

As $\mathscr{M} = \mathscr{M}(\mathscr{K})$ we denote the variety generated by the class \mathscr{K} , as $\mathscr{F}_{\mathscr{M}}(Y)$ the \mathscr{M} -free Y-generated algebra. As $\mathscr{F}_{\mathscr{M}}^{\mathscr{K}}(n)$ (for $n \in \omega$) we denote the algebra $\mathscr{F}_{\mathscr{M}}(\{x_1, \ldots, x_n\} \cup \operatorname{IF}_n(\mathscr{K}))$. For any \mathscr{K} -algebra $\mathscr{A} = \langle A; \sigma \rangle$ it is natural to identity the cortege $\vec{a} = \langle a_1, \ldots, a_n \rangle$ elements from \mathscr{A} with the homomorphism $\varphi_{\vec{a}}$ of the algebra $\mathscr{F}_{\mathscr{M}}^{\mathscr{K}}(n)$ in the algebra \mathscr{A} ($\varphi_{\bar{a}}(x_i) = a_i, \ \varphi_{\bar{a}}(f(x_1, \ldots, x_n)) =$ $f_{\mathscr{A}}(\varphi_{\bar{a}}(x_1), \ldots, \varphi_{\bar{a}}(x_n))$, for $f \in \operatorname{IF}_n(\mathscr{K})$).

Following the standart methods in algebraic geometry of universal algebras (for example as in [1]) we construct the Galya-connection between the subsets of the space A^n and the family of the binary relations on the algebra $F_{\mathscr{M}}^{\mathscr{K}}(n)$ and we introduce the concepts:

 $\vec{\mathscr{K}}\text{-}\mathrm{implicit}$ algebraic subsets of the algebra \mathscr{A} and $\mathscr{A}-$

 \mathcal{K} -closed congruence of the algebra $\mathscr{F}_{\mathcal{M}}^{\mathcal{K}}(n)$ (the family of this congruences we denote as $Con_{\mathcal{A}}^{\mathcal{K},A} \mathscr{F}_{\mathcal{M}}^{\mathcal{K}(n)}$).

Let \mathcal{K} -implicit equation for the category \mathcal{K} be any formal equation of the two \mathcal{K} -implicit operations. The set of the solutions of this \mathcal{K} -implicit equation in \mathcal{K} -algebra \mathcal{A} can be defined naturally. The formula

$$\underset{i \in I}{\&} f^i(x_1, \dots, x_n) = g^i(x_1, \dots, x_n) \to h(x_1, \dots, x_n) = k(x_1, \dots, x_n)$$

if $f^i, g^i, h, k \in \mathrm{IF}_n(\mathscr{K})$

naturally defines the concept of \mathscr{K} -implicit ∞ -quasiidentity. By analogy with the relation \leq^A (see [2]) of the comparison of the algebraic geometries of \mathscr{K} -algebras \mathscr{A}_1 and \mathscr{A}_2 , we can define the relation of quasiorder $\leq^{A,\mathscr{K}}$ (the comparison of the \mathscr{K} -implicit algebraic geometries of \mathscr{K} -algebras) on the class \mathscr{K} .

$$\mathscr{A}_1 \leq^{A, \mathscr{K}} \mathscr{A}_2 \iff Con_{\mathscr{A}_2}^{\mathscr{K}, A} \mathscr{F}_{\mathscr{M}}^{\mathscr{K}}(n) \subseteq Con_{\mathscr{A}_1}^{\mathscr{K}, A} \mathscr{F}_{\mathscr{M}}^{\vec{K}}(n).$$

So, we have the following

THEOREM. For any cathegory \mathscr{K} of universal algebras and any \mathscr{K} -algebras \mathscr{A}_1 , \mathscr{A}_2 the relation $\mathscr{A}_1 \leq^{A, \mathscr{K}} \mathscr{A}_2$ holds if and only if any \mathscr{K} -implicit ∞ quasiidentety which is valid on the algebra \mathscr{A}_1 is also valid on the algebra \mathscr{A} .

This theorem implies several corollaries for different categories of algebras:

- (1) when \mathscr{K} is a variety of universal algebras and \mathscr{K} -morphisms is class of all homomorphisms of \mathscr{K} -algebras into \mathscr{K} -algebras;
- (2) when \mathscr{K} is a pseudovariety of finite algebras and \mathscr{K} -morphisms is a class of all homomorphisms of \mathscr{K} -algebras into \mathscr{K} -algebras;
- (3) when \mathscr{K} is a \forall -class of algebras and \mathscr{K} -morphisms is a class of all embeddings of some \mathscr{K} -algebras into \mathscr{K} -algebras.

For example the following takes place.

COROLLARY. For any \forall -class \mathscr{K} of universal algebras the relation $\mathscr{A}_1 \leq^{A, \mathscr{K}} \mathscr{A}_2$ is valid iff any finitely generated non-one-element subalgebra of the algebra \mathscr{A}_2 can be isomorphically embedded into the algebra \mathscr{A}_1 .

References

- B.Plotkin. Some notions of algebraic geometry in universal algebra.- Algebra and Analisis, v.9, No.4, 1997, p.224-248.
- [2] A.G.Pinus. The geometrical scales of the varieties of algebras and quasiidentities.- Math. works, v.12, No.2, p.160-169.