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Modes are idempotent and entropic algebras. More precisely, an algebra (A,Ω)
of type τ : Ω −→ Z+ is called a mode if it is idempotent and entropic, i.e. each
singleton in A is a subalgebra and each operation ω ∈ Ω is actually a homomor-
phism from an appropriate power of the algebra. Both properties can also be
expressed by the following identities:

(I) ∀ω ∈ Ω, x . . . xω = x

(E) ∀ω, ϕ ∈ Ω, with m-ary ω and n-ary ϕ,

(x11 . . . x1mω) . . . (xn1 . . . xnmω)ϕ

= (x11 . . . xn1ϕ) . . . (x1m . . . xnmϕ)ω,

satisfied in the algebra (A,Ω).
Examples of modes are provided by
• normal bands (idempotent and entropic semigroups),
• many binary (or groupoid) modes appearing in combinatorics and geometry,
• affine spaces (or affine modules), algebras equivalent to full idempotent

reducts of modules over commutative (unital) rings, and their reducts and sub-
reducts (subalgebras of reducts,
• semi-affine spaces (or affine semimodules), algebras equivalent to full idem-

potent reducts of (unital zero-preserving) semimodules over (unital) commutative
semirings (with absorbing zero), and their reducts and subreducts.

Commutative unital semirings, and semimodules over them, are defined in simi-
lar fashion as for commutative rings and modules over them, abelian groups being
replaced by commutative monoids. Moreover, the zero o of each semiring S is as-
sumed to be an absorbing zero, i.e. xo = o for each x ∈ S, and each semimodule
is assumed to be zero-preserving, i.e. xo = 0, where 0 is the zero of the monoid
reduct. All semirings and semimodules considered here are of this type.

A long-standing problem in the theory of modes asked for a characterization of
those modes that embed as subreducts into semimodules over commutative unital
semirings.

The embeddability problem has now been solved as follows.

Theorem 1 (M. Stronkowski, 06, D. Stanovský, 09). A mode embeds as a sub-
reduct into a semimodule over a commutative semiring if and only if it satisfies
the so-called Szendrei identities.

For a given type τ , Szendrei identities arise from each word (term) of type τ of
the form

x11 . . . x1nw . . . x1n . . . xnnww,

where w is a derived operator with n variables defining a basic operation of the
reduct in question, by interchanging xij and xji for fixed 1 ≤ i, j ≤ n.
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Among the classes of embeddable modes known before let us mention the fol-
lowing ones:
• groupoid modes (or idempotent medial groupoids) (J. Ježek, T. Kepka);
• cancelative modes (A. Romanowska, J. D. H. Smith);
• certain sums of cancellative modes (A. Romanowska, J. D. H. Smith, A.

Zamojska-Dzienio);
• semilattice modes (K. Kearnes).
It is thus clear that each class of modes of a given type is divided into two

subclasses, the class of modes embeddable into semimodules, and the class of
non-embeddable modes. The first class contains two important subclasses. One
consists of affine spaces over commutative (unital) rings, while the other consists
of semi-affine spaces over (unital) commutative semirings (with absorbing zero).

The class R of affine spaces over a fixed commutative ring R (or affine R-
spaces) is known to be a variety. Such varieties are characterized as varieties of
Mal’cev modes. No comparable characterization of semi-affine spaces over a fixed
commutative semiring is currently known. The first difficulty one encounters is
the following: While the full idempotent reduct of a module over a commutative
ring is always non-trivial, the idempotent reducts of semimodules in question may
actually be trivial. For example, any free semimodule over the semiring of natural
numbers has as non-trivial derived (or “term”) operations the linear combinations
x1n1 + · · · + xknk. The only such idempotent operations are projections. This
raises the following:

Problem 2. Characterize semimodules over commutative semirings with non-
trivial idempotent reducts.

As idempotent reducts of such semimodules are in fact mode reducts, a solution
to this problem would provide a characterization of all semimodules with non-
trivial semi-affine space reducts, and a description of semi-affine spaces containing
all embeddable modes as subreducts.

While we are still not able to solve this problem in full generality, we can provide
some partial solutions.

First recall that, by P lonka theory for regularised varieties, it follows that for

certain (very general) varieties V of algebras, the regularization Ṽ of V and the
class of P lonka sums of V-algebras coincides. (There are two versions of this the-
orem: for algebras without constant operations, and for algebras with constants.)
In particular, this is true for idempotent varieties and for varieties of modules.

Let M̃ODR be the regularization of the varietyMODR of R-modules, modules

over a commutative unital ring R. Let R be the variety of affine R-spaces, and R̃

its regularization. The P lonka sums in R̃ of affine R-spaces over semilattices with
a smallest element are called bounded P lonka sums. The full idempotent reducts

of algebras in M̃ODR are called semi-affine R-spaces.

Theorem 3. [1] The subclass R̃
b

of bounded P lonka sums of the regularization R̃,
consists precisely of algebras term-equivalent to semi-affine R-spaces.

Let SMODR0 be the variety of semimodules over the semiring obtained from
a commutative unital ring R by adding a new zero to the ring R.
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Proposition 4. The varieties M̃ODR and SMODR0 are equivalent.

Theorem 5. [1] Let R be a commutative unital ring. Then the class of idempotent

reducts of semimodules in SMODR0 coincides with the class R̃
b
.

Note that the Mal’cev operation P of affine R-spaces becomes the so-called
regularized Mal’cev operation (or regMal’cev operation) in P lonka sums of affine
R-spaces. A mode with a regMal’cev operation is called a regMal’cev mode. A
characterization of semi-affine R-spaces is then completed by the following theo-
rem.

Theorem 6. [1] Each regMal’cev mode that is a bounded P lonka sum of affine
R-spaces is equivalent to a semi-affine R-space.
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[2] J. Ježek, T. Kepka, Medial Groupoids, Academia, Praha, 1983.
[3] K. A. Kearnes, Semilattice modes 1: the associated semiring, Algebra Universalis 34 (1995),

220–272.
[4] J. P lonka, On the sum of a direct system of universal algebras with nullary polynomials,

Algebra Universalis 19 (1984), 197–207.
[5] J. P lonka, A. Romanowska, Semilatice sums, in A. Romanowska and J. D. H. Smith (eds),

Universal Algebra and Quasigroup Theory, Heldermann Verlag, Berlin, 1992, pp. 123–158.
[6] A. B. Romanowska, Semi-affine modes and modals, Scientiae Mathematicae Japonicae 61

(2005), 159–194.
[7] A. B. Romanowska, J. D. H. Smith, Modal Theory, Heldermann Verlag, Berlin, 1985.
[8] A. B. Romanowska, J. D. H. Smith, Embedding sums of cancellative modes into functorial

sums of affine spaces, in Unsolved Problems on Mathematics for the 21st Century, a Tribute
to Kiyoshi Iseki’s 80th Birthday (J. M. Abe and S. Tanaka, eds.), IOS Press, Amsterdam,
2001, pp. 127–139.

[9] A. B. Romanowska, J. D. H. Smith, Modes, World Scientific, Singapore, 2002.
[10] A. B. Romanowska, A. Zamojska-Dzienio, Embedding semilattice sums of cancellative modes

into semimodules, Contributions to General Algebra 13, (2001), 295–304.
[11] A. B. Romanowska, A. Zamojska-Dzienio, Embedding sums of cancellative modes into semi-

modules, Czechoslovak Math. J. 55 (2005), 975–991.
[12] D. Stanovský, Idempotent subreducts of semimodules over commutative semirings, Rend.

Semin. Mat. Univ. Padova 121 (2009), 33–43.
[13] M. M. Stronkowski, On free modes, Comment. Math. Univ. Carolin. 47 (2006), 561–568.
[14] M. M. Stronkowski, On Embeddings of Entropic Algebras, Ph. D. Thesis, Warsaw University

of Technology, Warsaw, Poland, 2006.
[15] M. M. Stronkowski, Cancellation in entropic algebras, Algebra Universalis 60 (2009), 439–

468.
[16] M. M. Stronkowski, Embedding entropic algebras into semimodules and modules, Interna-

tional Journal of Algebra and Computation 19 (2009), 1025–1047.

— 3 —


