Semigroup Homomorphisms and Idempotent Elements in Sets of Tree Languages

Klaus Denecke

e-mail: kdenecke@rz.uni-potsdam.de University of Potsdam, Germany

Napaporn Sarasit* e-mail: napaporn_sarasit@hotmail.com University of Potsdam,Germany

> S.L. Wismath e-mail: ---

University of Lethbridge, Canada

Tree languages are sets of terms. We consider an indexed set of operation symbols f_i , where f_i is n_i -ary for every $i \in I$, and a finite alphabet $X_n := \{x_1, \ldots, x_n\}$. Sometimes we need a countably infinite alphabet $X := \{x_1, \ldots, x_n, \ldots\}$. Let $\tau := (n_i)_{i \in I}, n_i \geq 1$ be the sequence of all arities of the operation symbols f_i . In many applications the restriction to finite types is justified. The sequence τ is called the type of the terms. Then the set $W_{\tau}(X_n)$ of all n-ary terms of type τ is inductively defined in the usual way. Let $W_{\tau}(X)$ be the set of all terms of type τ . We denote by $\mathcal{F}_{\tau}(X_n) = (W_{\tau}(X_n); (\overline{f_i})_{i \in I})$ the absolutely free algebra of type τ generated by the *n*-element alphabet X_n . To each term of type τ there corresponds a tree. Therefore instead of terms w e will also speak of trees. Any element of the power set $\mathcal{P}(W_{\tau}(X_n))$ is called a tree language of type τ .

On the power set $\mathcal{P}(W_{\tau}(X_n))$ of the set $W_{\tau}(X_n)$ of all *n*-ary terms of type τ we define a binary associative operation $+_n$. For $B_1, B_2 \subseteq W_{\tau}(X_n)$ we set

$$B_1 +_n B_2 := \hat{S}^n(B_1, B_2, \dots, B_2).$$

This binary operation is derived from the superposition operation

$$\hat{S}_m^n : \mathcal{P}(W_\tau(X_n)) \times (\mathcal{P}(W_\tau(X_m)))^n \to \mathcal{P}(W_\tau(X_m))$$

on sets of terms and preserves recognizability. We study the properties of sets of *n*-ary terms which are idempotent with respect to this operation. We obtain that every idempotent element L of $(\mathcal{P}(W_{\tau}(X_n)); +)$

forms a subalgebra of $(W_{\tau}(X_n); S^n)$ with $L \cap X_n \neq \emptyset$. Next we consider varieties of tree languages consisting of idempotent elements only. Let VL be a variety of tree languages with $L \cap X_n \neq \emptyset$ for every $L \in VL_n$ and every $n \geq 1$. Then for every $L \in VL_n \setminus \{W_{\tau}(X_n)\}$ and for every $n \geq 1$ there exists a homomorphism $h_L : \mathcal{F}_{\tau}(X_n) \to \mathcal{F}_{\tau}(X_n)$ such that $(h_L)^{-1}(L) = \overline{L}$ where \overline{L} is the complement of L. This means that if we let VL be an idempotent variety (with respect to $+_n$) of tree languages of type τ , then for every $L \in VL_n \setminus \{W_{\tau}(X_n)\}$ and for every $n \geq 1$ there exists a homomorphism $h_L : \mathcal{F}_{\tau}(X_n) \to \mathcal{F}_{\tau}(X_n)$ such that $(h_L)^{-1}(L) = \overline{L}$. One more consequence is: If $L \in VL_n$, then for every $\widetilde{L} \subseteq L$ with $|\widetilde{L}| \leq n$ the universe of $\langle \widetilde{L} \rangle_{\mathcal{F}_{\tau}(X_n)}$ is a subset of L where $\langle \widetilde{L} \rangle_{\mathcal{F}_{\tau}(X_n)}$ for a subset $\widetilde{L} \subseteq W_{\tau}(x_n)$ is the subalgebra of $\mathcal{F}_{\tau}(X_n)$ which is generated by \widetilde{L} . Moreover we propose to extend the variety theory of tree languages to other classes of tree languages. Finally, we study and compare properties of semigroup homomorphisms $\varphi : (\mathcal{P}(W_{\tau}(X_n)); +_n) \to (\mathcal{P}(W_{\tau}(X_m)); +_m)$ with properties of homomorphisms $\overline{h} : \mathcal{F}_{\tau}(X_n) \to \mathcal{F}_{\tau}(X_m)$ between the absoulutely free algebras. If there is a finite image under a semigroup homomorphism φ , then any set of variables is mapped to a set of variables. Varieties of tree languages are closed under inverses of homomorphisms

$$h: \mathcal{F}_{\tau}(X_n) \to \mathcal{F}_{\tau}(X_m).$$

If we are interested in languages $L \subseteq W_{\tau}(X_n)$ which are idempotent with respect to $+_n$ and which belong to varieties of tree languages, we should at first ask for connections between semigroup homomorphisms of $(\mathcal{P}(W_{\tau}(X_n)); +_n)$ and homomorphisms of the absolutely free algebra $\mathcal{F}_{\tau}(X_n)$. Any homomorphism *overlineh* : $\mathcal{F}_{\tau}(X_n) \to \mathcal{F}_{\tau}(X_m)$ is the uniquely determined extension of a mapping $h: X_n \to W_{\tau}(X_m)$. Any mapping $\overline{h}: \mathcal{F}_{\tau}(X_n) \to \mathcal{F}_{\tau}(X_m)$ induces a mapping $\hat{h}: \mathcal{P}(W_{\tau}(X_n)) \to \mathcal{P}(W_{\tau}(X_m)$ by $\hat{h}(L) := \{\overline{h}(a) \mid a \in L\}$. We want to call this "a mapping induced by h". By definition, $\hat{h}(L) = \overline{h}(L)$ for any $L \subseteq W_{\tau}(X_n)$. This implies that \overline{h} is one-to-one or onto if and only if \hat{h} has this property. But for the inverse mappings we have $(\overline{h})^{-1}(L) = \{a \in W_{\tau}(X_n) \mid \overline{h}(a) \in L\} \in \{B \subseteq$ $W_{\tau}(X_n) \mid \hat{h}(B) = L\} = (\hat{h})^{-1}(L)$ and $B \subseteq (\overline{h})^{-1}(L)$ for any $L \subseteq W_{\tau}(X_n)$ and any $B \in (\hat{h})^{-1}(L)$.

The first problem is to find conditions for h under which \hat{h} is a semigroup homomorphism. Since a semigroup homomorphism \hat{h} maps idempotent elements of $(\mathcal{P}(W_{\tau}(X_n)); +_n)$ to idempotent elements of $(\mathcal{P}(W_{\tau}(X_m)); +_m),$ \hat{h} must be induced by a mapping $h : X_n \to X_m$. Clearly, there are semigroup homomorphisms which are not induced by homomorphisms of the absolutely free algebras. As an example we consider the following mapping $\varphi : \mathcal{P}(W_{\tau}(X_n)) \to \mathcal{P}(W_{\tau}(X_m))$. Let $B \subseteq W_{tau}(X_m)$ be an infinite idempotent set with respect to $+_m$. Then we define $\varphi(A) = B$ for any $A \subseteq W_{\tau}(X_n)$ and have $\varphi(A_1 +_n A_2) = B = B +_m B = \varphi(A_1) +_n \varphi(A_2)$ for any $A_1, A_2 \subseteq W_{\tau}(X_n)$. T his shows that φ is a semigroup homomorphism, but is not induced by a mapping $h : X_n \to X_m$.