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Since the inception of the notion of fuzzy topology much attention was paid to
the possible means of interaction between fuzzy and crisp topological settings, in
order to see whether fuzzy topology was doing anything new. In particular, dif-
ferent functors relating the categories Top of topological spaces and L-Top of L-
topological spaces (L being a suitable complete lattice) appeared in the literature,
providing the desired machinery for comparing classical and fuzzy developments.
One of the mo st important examples in the field is hypergraph functor. Initiated
by R. Lowen [8] and E. S. Santos [13], the concept was studied by many researchers
[4],[6],[7],[11], but still failed to gai n much prominence in the fuzzy community.
The main reasons were, firstly, the lack of information on functorial properties of
the hypergraph functor and, secondly, remarkable differences in its definition by
various authors (cf., e.g., those of U. Höhl e [6] and S. E. Rodabaugh [11]).

There has been several attempts to amend the situation. The former of the
above-mentioned deficiencies was partly removed by W. Kotzé, T. Kubiak [7]
and U. Höhle [6] by considering the hypergraph functor from the categorical poin
t of view. The second deficiency, however, appeared more resistant and was
approached to only recently by C. Guido [5]. Motivated by the concept of quasi-
coincidence [9] (which is an analogue of the intersection property for fuzzy sets),
he introduced the notion of attachment on a complete lattice as follows.

Definition 1. An attachment family, or more simply an attachment on a complete
lattice L is a family A = {Fa | a ∈ L} of subsets of L such that F⊥ = ∅, and
for every a ∈ L\{⊥}, Fa is a completely prime filter of L (

∨
S ∈ Fa implies

S
⋂
Fa 6= ∅).

The new concept gave rise to a functor L-Top
(−)∗−−→ Top, which appeared

to have striking similarities with the hypergraph functor. In particular, a slight
modification of the notion of attachment (generalized attachment) done by C
. Guido gave (−)∗ the power to provide a common framework for many (if not
all) approaches to the topic. It is important to notice, however, that the author
does not consider any categorical property of his functor apart from that of being
an embed ding. It is the purpose of this talk to develop the categorical aspects of
the attachment theory and its relationship to the hypergraph functor.

Based on our current research on topological properties which could be used in
an arbitrary variety of algebras, we introduce the notion of variety-based attach-
ment, replacing complete lattices of [5] by algebras (in an obvious sense, as set s
with operations).
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Definition 2. Let A be a variety of algebras and let A
(−)∗−−→ Setop be a functor

such that A∗ = |A| (| − | is the underlying set of A). AttA is the category,
whose objects are triples F = (ΩF,ΣF,) (called ΣF -attachments on ΩF ),

where ΩF and ΣF are algebras, and ΩF
−→ A(ΩF,ΣF ) is a map. Morphisms

F1
f=(Ω f,Σ f)−−−−−−→ F2 are A × A-morphisms (ΩF1,ΣF1)

(Ω f,Σ f)−−−−−→ (ΩF2,ΣF2) such
that for every a1 ∈ ΩF1 and every a2 ∈ ΩF2,

(2(a2))(Ω f(a1)) = (Σ f ◦ 1((Ω f)∗op(a2)))(a1),

with the composition and identities being those of A×A.

The notion gives rise to a new category for topology, which is a proper super-
category of the currently dominating one for topological structures in the fuzzy
community, introduced by S. E. Rodabaugh [12].

On the next step, we use the notion of variety-based topological system (devel-
oped in [15],[19], and motivated by the concept of topological system of S. Vick-
ers [20], already modified by various authors [1], cite51.II,[3],[10]) to provide a
variety-based hypergraph functor, which incorporates the respective fixed-basis
concepts of [8],[11] and partly those of [6],[7]. Moreover, the above-mentioned
functor (−)∗ of [5] is also included in the framework. Restricting the setting to
the fixed-basis case, we give the sufficient conditions for the new functor to be
an embedding, construct a right adjoint to it and show a relation of the obtained
adjunction to that provided by U. Höhle [6] for the particular case of frames
(complete lattices with the property that finite meets distribute over arbitrary
joins).

The results of the talk not only make the nature of hypergraph functor more
transparent, but also clearly show that its definition and many of its properties
depend not on a particular lattice-theoretic peculiarity of the respective under-
lying structure fo r fuzziness, but rather on its categorically-algebraic aspects.
This crucial fact makes a significant contribution to the new approach to topolog-
ical structures introduced by us recently under the name of categorically-algebraic
(catalg) topology [14],[16],[17],[18]. The new theory is based on both category the-
ory and universal algebra (relying more on the former) that is reflected in its name.
The main advantage of the catalg setting is the possibility of uniting (almost) all
approaches to (fuzzy) topology, currently developed in mathematics, under one
roof, ultimately erasing the border between crisp and fuzzy developments and
postulating the slogan: algebra is at the bottom of everything.
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