Pseudocomplements in Weak Lattices

Filip Švrček

e-mail: svrcekf@inf.upol.cz Palacký University Olomouc, Czech Republic

1. Preliminaries

In literature, we can find several generalizations of the lattice-concept. For example, if we consider a poset such that $U(x, y) \neq \emptyset \neq L(x, y)$ for any elements $x, y \in L$ and define $x \sqcup y$, resp. $x \sqcap y$, as an arbitrary element from U(x, y), resp. L(x, y), with the additional condition $x \sqcup y = y$ and $x \sqcap y = x$ iff $x \leq y$, we get so-called λ -lattice (see [6]).

We can get another one from *BCK*-algebras, structures modeling the behavior of a connective implication derived for non-classical logics. Recall that a structure $\mathcal{A} = (A; \rightarrow, 1)$ of type $\langle 2, 0 \rangle$ is a *BCK*-algebra if it satisfies the following axioms:

$$(BCK 1) \ (x \to y) \to ((y \to z) \to (x \to z)) = 1;$$

(BCK 2) $x \to ((x \to y) \to y) = 1;$

(BCK 3)
$$x \to x = 1;$$

(BCK 4) $x \to y = 1$ and $y \to x = 1$ together imply x = y.

If we define $x \sqcup y := (x \to y) \to y$ in \mathcal{A} then this new binary operation has certain important properties that are caught in the following concept.

Definition 1. A groupoid $\mathcal{L} = (L; \sqcup)$ is called a weak join-semilattice if it satisfies the following:

Proposition 2. A groupoid $\mathcal{L} = (L; \sqcup)$ is a weak join-semilattice if and only if \mathcal{L} fulfills the identity (PJ 1) and there is a partial order relation on L satisfying (PJ 2–4),

 $\begin{array}{l} (PJ \ 1) \ (x \sqcup y) \sqcup y = x \sqcup y, \\ (PJ \ 2) \ x, y \leq x \sqcup y \\ (PJ \ 3) \ x \leq y \implies x \sqcup y = y \\ (PJ \ 4) \ x \leq y \implies x \sqcup z \leq y \sqcup z. \end{array}$

Proof. See [4], Theorem 2.1.

We can consider also a concept dual to that of a weak join-semillatice.

Definition 3. A groupoid $\mathcal{L} = (L; \sqcap)$ is called a **weak meet-semilattice** if the following hold in L:

Proposition 4. A groupoid $\mathcal{L} = (L; \sqcap)$ is a weak meet-semilattice if and only if \mathcal{L} fulfills the identity (PM 1) and there is a partial order relation on L satisfying (PM 2-4), (PM 1) $x \sqcap (x \sqcap y) = x \sqcap y$,

 $(PM \ 1) \ x \sqcap (x \sqcap y) = x \sqcap y,$ $(PM \ 2) \ x \sqcap y = x, y$ $(PM \ 3) \ x \le y \implies x \sqcap y = x$ $(PM \ 4) \ x \le y \implies z \sqcap x \le z \sqcap y.$

Proof. See [4], Corollary 3.1.

Definition 5. An algebra $\mathcal{L} = (L; \sqcup, \sqcap)$ of the type $\langle 2, 2 \rangle$ is called a **weak lattice** if it is both a weak meet- and join-semilattice and if it satisfies the absorption laws

 $\begin{array}{ll} (\mathrm{W1}) \ x \sqcap (x \sqcup y) = x, \\ (\mathrm{W2}) \ (x \sqcap y) \sqcup y = y. \end{array}$

Proposition 6. An algebra $\mathcal{L} = (L; \sqcup, \sqcap)$ of the type $\langle 2, 2 \rangle$ is a weak lattice if and only if \mathcal{L} fulfills identities (PJ 1) and (PM 1) and if its induced order satisfies (PJ 2–4) and (PM 2–4).

Proof. See [4], Lemma 4.1.

2. Pseudocomplemented weak lattices

Definition 7. Let $\mathcal{L} = (L; \Box, 0)$ be a weak meet-semilattice with the least element 0. If there is a greatest element $x \in L$ such that

$$x \sqcap a = 0$$
, or $a \sqcap x = 0$ respectively,

then x is called a **left**, or a **right pseudocomplement** of the element $a \in L$ respectively. We will denote it a_L^* , respectively a_R^* .

If a_L^* , respectively a_R^* exists for each $x \in L$, we say that \mathcal{L} is left-, respectively right-pseudocomplemented.

Remark 8. For the sake of simplicity, we will write x_{BL}^{**} for $(x_B^*)_L^*$.

Lemma 9. Let $\mathcal{L} = (L; \Box, 0)$ be both a left- and right-pseudocomplemented weak meet-semilattice. Then for arbitrary $a, b \in L$

(i) $a \leq a_{RL}^{**}, a_{LR}^{**},$ (ii) $a \leq b \Longrightarrow b_L^* \leq a_L^*,$ (iii) $a_L^* = a_{LRL}^{***},$ (iv) $0_R^* = 0_L^*$ is the greatest element 1 in $\mathcal{L},$ (v) $1_L^* = 0,$ (vi) $a = b_L^* \Longrightarrow a = a_{RL}^{**}.$

Definition 10. We say that a weak meet-semilattice $\mathcal{L} = (L; \Box, 0)$ with the least element 0 is **pseudocomplemented** if it is both left- and right-pseudocomplemented and if $x_L^* = x_R^*$ holds for each element $x \in L$.

Remark 11. Let us denote $L^* = \{x^*; x \in L\}$ in any pseudocomplemented weak meet-semilattice $\mathcal{L} = (L; \Box, *, 0)$. We can show that L^* need not be a subalgebra of \mathcal{L} .

-2 -

Proposition 12. Let $\mathcal{L} = (L; \sqcap, *, 0)$ be a pseudocomplemented weak meetsemilattice. If we define binary operations \cup, \cap on L^* by

$$x \cup y := (y^* \sqcap x^*)^*,$$

 $x \cap y := (x \sqcap y)^{**},$

then the algebra $(L^*; \cup, \cap)$ is a weak lattice.

Theorem 13. For a given pseudocomplemented weak meet-semilattice $\mathcal{L} = (L; \sqcap, *, 0)$ the structure $(L^*; \cup, \cap, *, 0, 1)$ is a Boolean algebra.

Proposition 14. Let $\mathcal{L} = (L; \Box, *, 0)$ be a pseudocomplemented weak meet-semilattice. Let us define a binary relation Θ on L as follows

$$(x,y)\in\Theta\iff x^*=y^*. \tag{(*)}$$

Then Θ is an equivalence on L and for any $a \in L$ the following holds:

- (a) The element a^{**} is the greatest one in the class $[a]_{\Theta}$.
- (b) The class $[a]_{\Theta}$ contains just one element from L^* which is a^{**} .

In any pseudocomplemented weak meet-semilattice $\mathcal{L} = (L; \Box, *, 0)$, we can consider the set of so-called **dense elements** D(L), i.e. the elements whose pseudocomplements are equal to zero, i.e. $D(L) = \{x \in L; x^* = 0\}$.

Theorem 15. Let $\mathcal{L} = (L; \sqcap, *, 0)$ be a pseudocomplemented weak meet-semilattice and Θ the equivalence on L given by (*). Define operations $\bigcup, \bigcap, *$ on L/Θ as follows

$$[x]_{\Theta} \sqcup [y]_{\Theta} = [(y^* \sqcap x^*)^*]_{\Theta},$$
$$[x]_{\Theta} \Cap [y]_{\Theta} = [x^{**} \sqcap y^{**}]_{\Theta},$$
$$[x]_{\Theta}^* = [x^*]_{\Theta}$$

Then $\mathcal{L}/\Theta = (L/\Theta; \bigcup, \bigcap, \star, \{0\}, D(L))$ is a Boolean algebra isomorphic to $(L^*; \cup, \cap, \star, 0, 1)$.

References

- Chajda I. : Pseudocomplemented directoids, Comment. Math. Univ. Carol. 49 (2008), 533– 539.
- [2] Chajda I., Halaš R., Kühr J. : Semilattice Structures, Heldermann Verlag (Lemgo, Germany), 2007, 228pp, ISBN 978-3-88538-230-0.
- [3] Chajda I., Kühr J. : Algebraic Structures Derived from BCK-algebras, Miskolc Math. Notes, 8 (2007), 11–21.
- [4] Chajda I., Länger H. : Weak lattices, Math. Panonica, submitted in 2009.
- [5] Jones G.T. : Pseudo-complemented semi-lattices, Ph.D. Thesis, Univ. of California, Los Angeles, 1972.
- [6] Snášel V.: λ -lattices, Math. Bohemica, **122** (1997), 267–272.