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Main question in this talk

How do the term functions of A × B depend on the term

functions of A and B?

Clo(A) = set of term functions,

Pol(A) = set of polynomial functions.

The desired theorem

Let A,B be similar algebras. We assume [. . . ]. Then

Clok (A × B) = ClokA × ClokB.



Defining independence of A and B

What does Clok (A × B) = ClokA × ClokB mean?

Proposition

Let A, B be similar finite algebras, k ∈ N. TFAE:

1. Φ : Clok (A × B) → Clok (A)× Clok (B), Φ(tA×B) = (tA, tB)
is surjective.

2. For all k-variable terms s and t , there is a term u such that

uA = sA

uB = tB.



Independent groups

Proposition

Let G,H be finite groups of coprime order. Then for all terms

s, t there is a term u with

uG = sG and uH = tH.

Proof by example:

◮ Assume exp G = 18, exp H = 5.

◮ Let

s := xyxx and t := yxy .

◮ Consider

u := x55yxy36x55.

◮ Then

u ≡G xyxx and u ≡H yxy .



Necessary conditions for independence

Definition

A,B similar algebras. Then A and B are independent if for all

2-variable terms s and t , there is u with uA = sA and uB = tB.

Lemma

A, B similar independent algebras. Then for every subalgebra

E ≤ A × B, we have

E = πA(E)× πB(E).

Every subalgebra of E is a product subalgebra.



Necessary conditions for independence

Lemma

Let A, B be similar independent algebras, E ≤ A, F ≤ B. Then

for every α ∈ Con(E × F), there are β ∈ Con(E), γ ∈ Con(F)
such that for all a, c ∈ E , b,d ∈ F :

(

(

a

b

)

,

(

c

d

)

) ∈ α iff (a, c) ∈ β and (b,d) ∈ γ.

Every congruence of E × F is a product congruence.



Theorem (EA, Mayr, Opršal, 2014)

Let A,B be similar Mal’cev algebras, and let m,n ∈ N0.

Assume that

1. all subalgebras of A × B are product subalgebras,

2. for all subalgebras E of A and F of B, all congruences of

E × F are product congruences.

Then all subalgebras of Am × Bn are product subalgebras.

Then ∀C ≤ Am × Bn ∃E ≤ Am, F ≤ Bn : C = E × F.



Proof:

We have to show

∀C ≤ A
m × B

n ∃E ≤ A
m, F ≤ B

n : C = E × F.

◮ Let C ≤ Am × Bn.

◮ We show C = πAm(C)× πBn(C).

◮ We proceed by induction on m + n.

◮ The case m = 0 or n = 0 is easy.

◮ The case m = n = 1 follows from the assumptions.



Proof (induction step):

We show C = πAm(C)× πBn(C).

◮ Let (a,b) ∈ πAm(C)× πBn(C).

◮ By the induction hypothesis, ∃c ∈ A,d ∈ B s.t.

((a1, . . . ,am−1, c), (b1, . . . ,bn−1, bn)) ∈ C

((a1, . . . ,am−1, am), (b1, . . . ,bn−1, d)) ∈ C

◮ Define α ⊆ (A × B)2 (a set of forks) by

α := {((xm, yn), (x
′

m , y ′

n)) |||

((x1, . . . , xm−1, xm), (y1, . . . , yn−1, yn)) ∈ C and

((x1, . . . , xm−1, x
′

m), (y1, . . . , yn−1, y
′

n)) ∈ C}.

◮ α is a congruence of a subalgebra S ≤ A × B.

◮ ((c,bn), (am,d)) ∈ α. Hence ((c,d), (am,d)) ∈ α.



Proof (induction step):

◮ From ((c,d), (am,d)) ∈ α, we obtain u ∈ Am−1, v ∈ Bn−1

s.t.
((u, c), (v,bn)) ∈ C

((u, c), (v,d)) ∈ C.

◮ We already had (induction hypothesis)

((a,am), (b,d)) ∈ C.

◮ Mal’cev yields

((a1, . . . ,am), (b1, . . . ,bn)) ∈ C.



Application to term functions

Corollary (EA, Mayr, 2014)

Let A,B be similar finite Mal’cev algebras, k ∈ N. We assume:

1. All subalgebras of A × B are product subalgebras.

2. For all subalgebras E of A and F of B, all congruences of

E × F are product congruences.

Then Φ : Clok (A × B) → Clok (A)× Clok (B),

Φ(tA×B) = (tA, tB) for all terms t

is a bijection.

Proof:

Consider D ≤ AAk
× BBk

with D := {(uA,uB) ||| u is a term }.
Then D = πA(D)× πB(D) = Clok (A)× Clok (B).



Application to polynomial functions

Corollary

Let A,B be similar finite Mal’cev algebras, k ∈ N. We assume:

All congruences of A × B are product congruences.

Then Φ : Polk (A × B) → Polk (A)× Polk (B), Φ(p) = ([p]ν1
, [p]ν2

)
is a bijection.

Proof:

For every a ∈ A, b ∈ B, add a constant operation c(a,b) with

cA×B

(a,b)
= (a,b). Then apply the previous theorem.

The corollary was conjectured in [Pilz, 1980]. It was proved in

[Aichinger, 2001] for finite expanded groups, and in

[Kaarli and Mayr, 2010] for finite Mal’cev algebras and for finite

algebras with majority term. It does not generalize to CD varieties.



Generalisation

Edge terms

For k ≥ 3, a (k + 1)-ary term is a k-edge term on A if for all
a,b ∈ A:

tA(a, a, b, b, b, . . . , b) = b

tA(a, b, a, b, b, . . . , b) = b

tA(b, b, b, a, b, . . . , b) = b
. . .

tA(b, b, b, b, b, . . . , a) = b

Theorem [Berman et al., 2010]

A finite algebra. A has an edge term ⇔ ∃ polynomial p ∀n ∈ N :

|Sub(An)| ≤ 2p(n). (A has few subpowers).



Independent algebras with edge term

Theorem (EA, Mayr, 2014)

Let A,B be algebras in a variety with k-edge term. Assume:

1. For all r , s ∈ N with r + s ≤ max (2, k − 1), all subalgebras

of Ar × Bs are product subalgebras.

2. For all E ≤ A,F ≤ B, all tolerances of E × F are product

tolerances.

Then for all m,n ∈ N, all subalgebras of Am × Bn are product

subalgebras.



Application to term functions

Corollary

Let A,B be finite algebras in a variety V with k-edge term.

Assume

1. for all r , s ∈ N with r + s ≤ max(2, k − 1), all subalgebras

of Ar × Bs are product subalgebras

2. for all E ≤ A,F ≤ B, all tolerances of E × F are product

tolerances.

Let n ∈ N, and let s, t be n-variable terms. Then there is a term

u with uA = sA and uB = tB.
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