Some properties of strong Galois connections

AAA88

20 - 22 June 2014, Warsaw

Michiro Kondo

Tokyo Denki University, Japan

Let X be a residuated lattice with $f \dashv g$. If $f \dashv g$ satisfies the condition (sGC1): $g(x) \le x$, then

(sGC2):
$$g(f(x) \rightarrow y) = f(x) \rightarrow g(y)$$

$$\iff \begin{cases} (1) \ g(g(x)) = g(x) \\ (2) \ g(x) \odot g(y) \le g(x \odot y) \\ (FS) : f(x \to y) \le g(x) \to f(y) \end{cases}$$

monadic Heyting algebras (Bezhanisvili 1998)
monadic MV-algebras (DiNola, Grigolia 2004)
monadic BL-algebras (Grigolia 2006)
monadic Rℓ-monoids (Rachůnek, Švrček 2008)
monadic non-com. Rℓ-monoids (Rachůnek,
Šalounova 2013)

monadic residuated lattices from the view point of Galois connection $(X, \land, \lor, \odot, \rightarrow, 0, 1)$ is a residuated lattice, (RL) if (1) $(X, \land, \lor, 0, 1)$ is a bounded lattice; (2) $(X, \odot, 1)$ is a commutative monoid; (3) For all $x, y, z \in X$,

$$x \odot y \le z \iff x \le y \to z$$

We define $x' = x \rightarrow 0$, which is a negation in a sense.

Proposition 1.

(1)
$$0' = 1, 1' = 0$$

(2) $x \odot x' = 0$
(3) $x \le y \iff x \to y = 1$
(4) $x \odot (x \to y) \le y$
(5) $x \le y \Rightarrow x \odot z \le y \odot z$
(6) $x \le y \Rightarrow z \to x \le z \to y, y \to z \le x \to z$
(7) $(x \lor y) \odot z = (x \odot z) \lor (y \odot z)$
(8) $(x \lor y)' = x' \land y'$

Let (P, \leq) be a partially ordered set. A pair of maps $f, g : P \rightarrow P$ is called a Galois connection $(f \dashv g)$ if

$$f(x) \le y \iff x \le g(y) \quad (x, y \in P)$$

A Galois connection (f,g) is strong $(f \dashv_s g)$ if (sGC1) $g(x) \le x$ (sGC2) $g(f(x) \rightarrow y) = f(x) \rightarrow g(y)$

(X, f, g) is a residuated lattice with strong Galois connection (simply, RLsGC) if $f \dashv_s g$.

Proposition 2. For RLsGC (X, f, g), we have

(1)
$$f(0) = 0, g(1) = 1$$

(2) $x \le f(x)$
(3) $f(g(x)) = g(x), g(f(x)) = f(x)$
(4) $f(x) = x \iff g(x) = x$
(5) $f(x \odot y) \le f(x) \odot f(y), g(x) \odot g(y) \le g(x \odot y)$
(6) $f(f(x) \odot f(y)) = f(x) \odot f(y), g(g(x) \odot g(y)) = g(x) \odot g(y)$
(7) $g(f(x) \to y(y)) = f(x) \to f(y)$
(8) $f(f(x) \land f(y)) = f(x) \land f(y)$
(9) $g(f(x) \lor f(y)) = f(x) \lor f(y)$

From the above,

$$X_{fg} = \{x \in X \mid f(x) = x\} = \{x \in X \mid g(x) = x\}$$

is a subalgebra of *X*. A subalgebra X_0 is called relatively complete if, for all $a \in X$, there exist a minimum and a maximum element of the sets $\{x \in X_0 | a \le x\}$ and $\{x \in X_0 | x \le a\}$, respectively. We denote

$$f_{X_0}(a) = \min\{x \in X_0 \mid a \le x\}$$
$$g_{X_0}(a) = \max\{x \in X_0 \mid x \le a\}$$

Lemma 3. For a RLsGC (X, f, g), X_{fg} is a relatively complete subalgebra.

Conversely,

Proposition 4. If X_0 is a relatively complete subalgebra, then

(1) (sGC1) $g_{X_0}(x) \le x$ (2) $f_{X_0} \dashv g_{X_0}$ (3) (sGC2) $g_{X_0}(f_{X_0}(x) \to y) = f_{X_0}(x) \to g_{X_0}(y)$ From the above,

Lemma 5. If X_0 is a relatively complete subalgebra, then (X, f_{X_0}, g_{X_0}) is a RLsGC.

Theorem 6. Let *X* be a residuated lattice. Then, there exists a strong Galois connection $f \dashv_s g$ \iff there exists a relatively complete subalgebra of *X*. (H, \exists, \forall) is called a monadic Heyting algebra (mHA) if H is a Heyting algebra and \exists, \forall satisfy

(H1) $\forall x < x$ (H2) $x \leq \exists x$ (H3) $\forall (x \land y) = \forall x \land \forall y$ (H4) $\exists (x \lor y) = \exists x \lor \exists y$ (H5) $\forall 1 = 1$ (H6) $\exists 0 = 0$ $(H7) \quad \forall \exists x = \exists x$ (H8) $\exists \forall x = \forall x$ (H9) $\exists (\exists x \land y) = \exists x \land \exists y$ **Proposition 7.** For every mHA (H, \exists, \forall) , $\exists \dashv_s \forall$.

Proposition 8. (H, \exists, \forall) is an mHA $\iff H$ is a RLsGC and $\land = \odot$.

Corollary 9. For a Heyting algebra H, (H, \exists, \forall) is an mHA \iff there exists a relatively complete subalgebra of H. <u>monadic residuated lattice</u> $(X, \land, \lor, \odot, \rightarrow, \exists, \forall, 0, 1)$ is a residuated lattice with \exists, \forall satisfying

(m1) $x < \exists x$ (m2) $\forall x < x$ (m3) $\forall (x \rightarrow \exists y) = \exists x \rightarrow \exists y$ (m4) $\forall (\exists x \to y) = \exists x \to \forall y$ (m5) $\forall (x \lor \exists y) = \forall x \lor \exists y$ (m6) $\exists \forall x = \forall x$ (m7) $\forall \forall x = \forall x$ (m8) $\exists (\exists x \odot \exists x) = \exists x \odot \exists x$ (m9) $\exists (x \odot x) = \exists x \odot \exists x$

Basic result: $\exists \dashv_s \forall$, that is, (\exists, \forall) is a strong Galois connection.

 \downarrow

Lemma 10. For a residuated lattice X, (X, \exists, \forall) is a monadic residuated lattice $\iff (X, \exists, \forall)$ is a RLsGC with (m5) and (m9). **Application:** On Kripke frame (W, R) of modal logic based on CPL,

 $f \dashv g \iff R$ is symmetric (sGC1) : $g(x) \le x \iff R$ is reflexive (sGC2) $\iff R$? Characterization of (sGC2)

$$(\mathsf{sGC2}): g(f(x) \to y) = f(x) \to g(y)$$

Lemma 11. Let X be a residuated lattice with $f \dashv g$ and (sGC1): $g(x) \le x$. The conditions are equivalent:

(a) (sGC2):
$$g(f(x) \to y) = f(x) \to g(y)$$

(b) $g(g(x) \to y) = g(x) \to g(y)$
(c) $f(f(x) \odot y) = f(x) \odot f(y)$
(d) $f(g(x) \odot y) = g(x) \odot f(y)$

Lemma 12. For any residuated lattice X with $f \dashv g$, the following conditions are equivalent:

(i)
$$f(x) \rightarrow g(y) \leq g(x \rightarrow y)$$

(ii) $f(x) \odot g(y) \leq f(x \odot y)$

(FS): $f(x \to y) \le g(x) \to f(y)$

Lemma 13. Let X be a residuated lattice with $f \dashv g$ and (sGC1): $g(x) \le x$. Then we have

$$(m3) : g(x \to f(y)) = f(x) \to g(y)$$
$$\iff \begin{cases} (1) \ g(g(x)) = g(x) \\ (FS) : f(x \to y) \le g(x) \to f(y) \end{cases}$$

Lemma 14. Let X be a residuated lattice with $f \dashv g$ and (sGC1): $g(x) \le x$. Then we have

$$(\mathsf{sGC2}) \Longleftrightarrow \begin{cases} (\mathsf{m3}): \ g(x \to f(y)) = f(x) \to g(y) \\ (2) \ g(x) \odot g(y) \le g(x \odot y) \end{cases}$$

Hence we get

Theorem 15. Let X be a residuated lattice with $f \dashv g$ and (sGC1): $g(x) \le x$.

$$(\mathsf{sGC2}) \iff \begin{cases} (1) \ g(g(x)) = g(x) \\ (2) \ g(x) \odot g(y) \le g(x \odot y) \\ (\mathsf{FS}) : f(x \to y) \le g(x) \to f(y) \end{cases}$$

Proposition 16. On any Boolean algebra with Galois connection $f \dashv g$,

$$(FS) \iff f(x) = (g(x'))'$$

This means that

$\mathsf{CPL} + \{ f \dashv g \} + \{ gA \to A \} + \{ (\mathsf{sGC2}) \}$

 $= \mathsf{CPL} + \{f \dashv g\} + \{gA \rightarrow A\}$ $+ \{gA \rightarrow ggA\} + \{(\mathsf{FS})\}$

 $= \mathsf{CPL} + \{A \to gfA\} + \{gA \to A\}$ $+ \{gA \to ggA\} + \{fA \longleftrightarrow \neg g \neg A\}$

= S5

Hence, in the case of Heyting algebras (intuitionistic logic),

 $Int + \{f \dashv g\} + \{gA \to A\} + \{(sGC2)\}$

$$= \operatorname{Int} + \{f \dashv g\} + \{gA \rightarrow A\}$$
$$+ \{gA \rightarrow ggA\} + \{(\mathsf{FS})\}$$

 $= Int + \{A \rightarrow gfA, fgA \rightarrow A\} + \{gA \rightarrow A\}$ $+ \{gA \rightarrow ggA\} + \{(FS)\}$

= IntS5 (= logic of mHA)

Thank you for your attention !!