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Let X be a residuated lattice with f ⊣ g. If f ⊣ g

satisfies the condition (sGC1): g(x) ≤ x, then

(sGC2): g(f(x)→ y) = f(x)→ g(y)

⇐⇒



(1) g(g(x)) = g(x)

(2) g(x)⊙ g(y) ≤ g(x⊙ y)

(FS) : f(x→ y) ≤ g(x)→ f(y)
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Monadic algebras

monadic Heyting algebras (Bezhanisvili 1998)

monadic MV-algebras (DiNola, Grigolia 2004)

monadic BL-algebras (Grigolia 2006)

monadic Rℓ-monoids (Rach̊unek, Švrček 2008)

monadic non-com. Rℓ-monoids (Rach̊unek,

Šalounova 2013)

⇓

monadic residuated lattices from the view

point of Galois connection
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(X,∧,∨,⊙,→,0,1) is a residuated lattice, (RL) if

(1) (X,∧,∨,0,1) is a bounded lattice;

(2) (X,⊙, 1) is a commutative monoid;

(3) For all x, y, z ∈ X,

x⊙ y ≤ z ⇐⇒ x ≤ y → z

We define x′ = x → 0, which is a negation in a

sense.
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Proposition 1.

(1) 0′ = 1, 1′ = 0

(2) x⊙ x′ = 0

(3) x ≤ y ⇐⇒ x→ y = 1

(4) x⊙ (x→ y) ≤ y

(5) x ≤ y ⇒ x⊙ z ≤ y ⊙ z

(6) x ≤ y ⇒ z → x ≤ z → y, y → z ≤ x→ z

(7) (x ∨ y)⊙ z = (x⊙ z) ∨ (y ⊙ z)

(8) (x ∨ y)′ = x′ ∧ y′
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Let (P,≤) be a partially ordered set. A pair of

maps f, g : P → P is called a Galois connection

(f ⊣ g) if

f(x) ≤ y ⇐⇒ x ≤ g(y) (x, y ∈ P )

A Galois connection (f, g) is strong (f ⊣s g) if

(sGC1) g(x) ≤ x

(sGC2) g(f(x)→ y) = f(x)→ g(y)

(X, f, g) is a residuated lattice with strong Galois

connection (simply, RLsGC) if f ⊣s g.
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Proposition 2. For RLsGC (X, f, g), we have

(1) f(0) = 0, g(1) = 1

(2) x ≤ f(x)

(3) f(g(x)) = g(x), g(f(x)) = f(x)

(4) f(x) = x⇐⇒ g(x) = x

(5) f(x⊙y) ≤ f(x)⊙f(y), g(x)⊙g(y) ≤ g(x⊙y)

(6) f(f(x)⊙ f(y)) = f(x)⊙ f(y),

g(g(x)⊙ g(y)) = g(x)⊙ g(y)

(7) g(f(x)→ y(y)) = f(x)→ f(y)

(8) f(f(x) ∧ f(y)) = f(x) ∧ f(y)

(9) g(f(x) ∨ f(y)) = f(x) ∨ f(y)
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From the above,

Xfg = {x ∈ X | f(x) = x} = {x ∈ X | g(x) = x}

is a subalgebra of X. A subalgebra X0 is called

relatively complete if, for all a ∈ X, there exist a

minimum and a maximum element of the sets

{x ∈ X0 | a ≤ x} and {x ∈ X0 |x ≤ a}, respectively.

We denote

fX0
(a) = min{x ∈ X0 | a ≤ x}

gX0
(a) = max{x ∈ X0 |x ≤ a}
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Lemma 3. For a RLsGC (X, f, g), Xfg is a rela-

tively complete subalgebra.

Conversely,

Proposition 4. If X0 is a relatively complete sub-

algebra, then

(1) (sGC1) gX0
(x) ≤ x

(2) fX0
⊣ gX0

(3) (sGC2) gX0
(fX0

(x)→ y) = fX0
(x)→ gX0

(y)
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From the above,

Lemma 5. If X0 is a relatively complete subal-

gebra, then (X, fX0
, gX0

) is a RLsGC.

Theorem 6. Let X be a residuated lattice. Then,

there exists a strong Galois connection f ⊣s g
⇐⇒ there exists a relatively complete subalgebra

of X.
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(H, ∃, ∀) is called a monadic Heyting algebra (mHA)

if H is a Heyting algebra and ∃, ∀ satisfy

(H1) ∀x ≤ x

(H2) x ≤ ∃x
(H3) ∀(x ∧ y) = ∀x ∧ ∀y
(H4) ∃(x ∨ y) = ∃x ∨ ∃y
(H5) ∀1 = 1

(H6) ∃0 = 0

(H7) ∀∃x = ∃x
(H8) ∃∀x = ∀x
(H9) ∃(∃x ∧ y) = ∃x ∧ ∃y

11



Proposition 7. For every mHA (H, ∃,∀), ∃ ⊣s ∀.

Proposition 8. (H, ∃, ∀) is an mHA

⇐⇒ H is a RLsGC and ∧ = ⊙.

Corollary 9. For a Heyting algebra H,

(H, ∃, ∀) is an mHA

⇐⇒ there exists a relatively complete subalgebra

of H.
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monadic residuated lattice (X,∧,∨,⊙,→,∃,∀,0,1)
is a residuated lattice with ∃,∀ satisfying

(m1) x ≤ ∃x
(m2) ∀x ≤ x

(m3) ∀(x→ ∃y) = ∃x→ ∃y
(m4) ∀(∃x→ y) = ∃x→ ∀y
(m5) ∀(x ∨ ∃y) = ∀x ∨ ∃y
(m6) ∃∀x = ∀x
(m7) ∀∀x = ∀x
(m8) ∃(∃x⊙ ∃x) = ∃x⊙ ∃x
(m9) ∃(x⊙ x) = ∃x⊙ ∃x
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Basic result: ∃ ⊣s ∀, that is, (∃, ∀) is a strong

Galois connection.

⇓

Lemma 10. For a residuated lattice X,

(X, ∃, ∀) is a monadic residuated lattice

⇐⇒ (X, ∃,∀) is a RLsGC with (m5) and (m9).

14



Application: On Kripke frame (W,R) of modal

logic based on CPL,

f ⊣ g ⇐⇒ R is symmetric

(sGC1) : g(x) ≤ x⇐⇒ R is reflexive

(sGC2)⇐⇒ R ?
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Characterization of (sGC2)

(sGC2) : g(f(x)→ y) = f(x)→ g(y)

Lemma 11. Let X be a residuated lattice with

f ⊣ g and (sGC1): g(x) ≤ x. The conditions are

equivalent:

(a) (sGC2): g(f(x)→ y) = f(x)→ g(y)

(b) g(g(x)→ y) = g(x)→ g(y)

(c) f(f(x)⊙ y) = f(x)⊙ f(y)

(d) f(g(x)⊙ y) = g(x)⊙ f(y)
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Lemma 12. For any residuated lattice X with

f ⊣ g, the following conditions are equivalent:

(i) f(x)→ g(y) ≤ g(x→ y)

(ii) f(x)⊙ g(y) ≤ f(x⊙ y)

(FS): f(x→ y) ≤ g(x)→ f(y)
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Lemma 13. Let X be a residuated lattice with

f ⊣ g and (sGC1): g(x) ≤ x. Then we have

(m3) : g(x→ f(y)) = f(x)→ g(y)

⇐⇒


(1) g(g(x)) = g(x)

(FS) : f(x→ y) ≤ g(x)→ f(y)
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Lemma 14. Let X be a residuated lattice with

f ⊣ g and (sGC1): g(x) ≤ x. Then we have

(sGC2)⇐⇒


(m3) : g(x→ f(y)) = f(x)→ g(y)

(2) g(x)⊙ g(y) ≤ g(x⊙ y)
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Hence we get

Theorem 15. Let X be a residuated lattice with

f ⊣ g and (sGC1): g(x) ≤ x.

(sGC2)⇐⇒



(1) g(g(x)) = g(x)

(2) g(x)⊙ g(y) ≤ g(x⊙ y)

(FS) : f(x→ y) ≤ g(x)→ f(y)
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Proposition 16. On any Boolean algebra with

Galois connection f ⊣ g,

(FS) ⇐⇒ f(x) = (g(x′))′

This means that
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CPL+ {f ⊣ g}+ {gA→ A}+ {(sGC2)}

= CPL+ {f ⊣ g}+ {gA→ A}
+ {gA→ ggA}+ {(FS)}

= CPL+ {A→ gfA}+ {gA→ A}
+ {gA→ ggA}+ {fA←→ ¬g¬A}

= S5
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Hence, in the case of Heyting algebras (intu-

itionistic logic),

Int + {f ⊣ g}+ {gA→ A}+ {(sGC2)}

= Int + {f ⊣ g}+ {gA→ A}
+ {gA→ ggA}+ {(FS)}

= Int + {A→ gfA, fgA→ A}+ {gA→ A}
+ {gA→ ggA}+ {(FS)}

= IntS5 (= logic of mHA)
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Thank you for your attention !!
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