On finite algebras with the basis property

Jan Krempa

Institute of Mathematics, University of Warsaw ul. Banacha 2, 02-097 Warszawa, Poland jkrempa@mimuw.edu.pl

(with Agnieszka Stocka)

References

- P. Apisa, B. Klopsch, A generalization of the Burnside basis theorem, J. Algebra 400 (2014), 8-16.
- [2] K. Głazek, Some old and new problems in the independence theory, Coll. Mat. 42 (1979), 127-189.
- [3] P.R. Jones, Basis properties for inverse semigroups, J. Algebra, 50 (1978), 135-152.
- [4] J. Krempa, A. Stocka, On some invariants of finite groups, Int. J. Group Theory 2(1) (2013), 109-115.
- [5] J. Krempa, A. Stocka, On some sets of generators of finite groups, J. Algebra 405 (2014), 122-134.
- [6] J. Krempa, A. Stocka, Corrigendum to "On some sets of generators of finite groups", J. Algebra 408 (2014), 61-62.
- [7] J. McDougall-Bagnall, M. Quick, Groups with the basis property, J. Algebra 346 (2011), 332-339.
- [8] A. Pasini, On the Frattini subalgebra F(A) of an algebra A, Boll. Un. Mat. Ital. (4) 12 (1975), 37-40.

1 General algebras

All algebras considered in this talk, usually A, are finite and have at least one 0-ary operation. If $X \subseteq A$ is a subset then $\langle X \rangle$ is the subalgebra of A generated by X. An element $a \in A$ is a *nongenerator* if it can be rejected from every generating set of A containing this element. Let $\Phi(A)$ denotes the set of all nongenerators of A, (the *Frattini subset of A*). **Proposition 1.1.** Always $\Phi(A)$ is the intersection of all maximal subalgebras of A.

A subset $X \subseteq A$ is said here to be:

- *g-independent* if $\langle Y, \Phi(A) \rangle \neq \langle X, \Phi(A) \rangle$ for every proper subset $Y \subset X$;
- a g-base of A, if X is a g-independent generating set of A.

Every algebra has a g-base. Thus we can consider the following g-invariants:

$$sg(A) = \sup_X |X|$$
 and
 $ig(A) = \inf_X |X|,$
(1)

where X runs over all g-bases of A.

Proposition 1.2. $ig(A) = sg(A) = 0 \Leftrightarrow A$ has no proper subalgebras; $ig(A) = sg(A) = 1 \Leftrightarrow A$ has exactly one maximal subalgebra;

In any other case $1 \leq ig(A) \leq sg(A) < \infty$.

Algebras A with ig(A) = sg(A) are named *B-algebras*. An algebra A has *the basis property* if every its subalgebra (in particular A itself) is a *B*-algebra. Let \mathcal{K} be a pseudo variety of algebras. Then it is interesting to characterize \mathcal{B} -algebras and algebras with the basis property from \mathcal{K} . It is also interesting to connect property \mathcal{B} and the basis property with algebraic operations on algebras from \mathcal{K} .

2 Groups

If G is a group then $\Phi(G)$ is a normal subgroup. Hence we can consider the factor group $G/\Phi(G)$.

Theorem 2.1 (Burnside). Let p be any prime number. If |G| is a power of p (G is a pgroup) and $|G/\Phi(G)| = p^r$, then ig(G) =sg(G) = r. Hence G has the basis property. **Example 2.2.** Let G be a cyclic group of order $n = p_1^{k_1} \cdot \ldots \cdot p_r^{k_r}$, where p_i are distinct primes and $k_i > 0$ for $i = 1, \ldots, r$. Then sg(G) = r, while ig(G) = 1. Hence, for r > 1, G is not a \mathcal{B} -group.

Corollary 2.3. Let $1 \le m \le n < \infty$. Then there exists a group G such that ig(G) = mand sg(G) = n. **Theorem 2.4** ([3]). Let G be a group with the basis property. Then:

- 1. Every element of G has a prime power order;
- 2. G is soluble;
- 3. Every homomorphic image of G has the basis property;
- 4. If $G = G_1 \times G_2$ where G_i are nontrivial, then G has to be a p-group.

Theorem 2.5 ([1, 5]). Let G be a group. Then G has the basis property if and only if the following conditions are satisfied:

- 1. Every element of G has a prime power order,
- 2. G is a semidirect product of the form $P \rtimes Q$, where P is a p-group and Q is a cyclic q-group, for primes $q \neq p$,
- 3. For every subgroup $H \leq G$, some well defined conditions are satisfied.

Example 2.6. If P is an elementary abelian 2-group of order 8, Q is a group of order 7 and $G = P \rtimes Q$ is any nonabelian semidirect product of these groups, then G has the basis property. In this group sg(G) = ig(G) = 2, but sg(P) = ig(P) = 3. Hence, neither ig nor sg is a monotone invariant.

Example 2.7. Consider the group

$$P = \langle a, b \mid a^7 = b^7 = c^7 = 1 = [a, c] = [b, c] \rangle,$$

where c = [a, b]. Then $|P| = 7^3$ and every nontrivial element of P has order 7.

Let $Q = \langle x \rangle$ be the group of order 3. Then Q can act on P in the following way:

$$a^{x^{j}} = a^{2^{j}}$$
 and $b^{x^{j}} = b^{2^{j}}$ for $1 \le j \le 3$.
Thus, $c^{x^{j}} = c^{2^{2j}} = c^{4^{j}}$.

Let $G = P \rtimes Q$ under the above action. Then G is a \mathcal{B} -group with elements only of orders 1, 3 and 7.

If $H = \langle a, c, x \rangle$ then H is not a \mathcal{B} -group. Hence G does not satisfy the basis property.

3 Some generalizations

The classes of \mathcal{B} -groups and of groups with the basis property are rather narrow. Thus we proposed in [5] a modification of these notions. A subset $X \subseteq G$ is said there to be:

- *pp-independent* if X is a g-independent set of elements of Prime Power orders;
- a pp-base of G, if X is a pp-independent generating set of G.

Then pp-bases exist and the following invariants can be considered:

$$s_{pp}(G) = \sup_X |X|$$
 and
 $i_{pp}(G) = \inf_X |X|,$
(2)

where X runs over all pp-bases of G. We also agreed in [5] that a group G is a \mathcal{B}_{pp} -group if $i_{pp}(G) = s_{pp}(G)$ and G has the *pp*-basis property if all its subgroups are \mathcal{B}_{pp} -groups. The next results are from [5, 6]:

Proposition 3.1. A group G has the basis property if and only if it has the pp-basis property and every its element is of prime power order.

Example 3.2. Let

$$G = \langle a, b \mid a^5 = b^4 = 1, a^b = a^4 \rangle.$$

Then G is of order 20 and has the pp-basis property, but it does not have the basis property.

Theorem 3.3. Let G be a group and $H \leq G$ be a normal subgroup.

- 1. If G is a \mathcal{B}_{pp} -group, then G/H is also a \mathcal{B}_{pp} -group.
- 2. If G has the pp-basis property, then G/Hhas also the pp-basis property.
- 3. If G has the pp-basis property, then G is soluble.

Theorem 3.4. Let G_1 and G_2 be groups with coprime orders.

- 1. G_1 and G_2 are \mathcal{B}_{pp} -groups if and only if $G_1 \times G_2$ is a \mathcal{B}_{pp} -group.
- 2. G_1 and G_2 have the pp-basis property if and only if $G_1 \times G_2$ has the pp-basis property.

Theorem 3.5. Every nilpotent group has the pp-basis property.

We proved a structure theorem for groups with pp-basis property. It will be published soon.