Some regular quasivarieties of commutative binary modes

K. Matczak, Faculty of Civil Engineering, Mechanics and Petrochemistry in Płock
Warsaw University of Technology
09-400 Płock, Poland,

A. B. Romanowska, Faculty of Mathematics and Information
Sciences
Warsaw University of Technology
00-661 Warsaw, Poland

AAA88 Workshop on General Algebra, 19-22 June 2014

- Commutative binary modes
- The lattice of quasivarieties of a quasi-regularization of an irregular variety

3 The lattice of quasivarieties of a regular variety

Commutative binary modes

Binary (or groupoid) modes are algebras with one binary idempotent multiplication satisfying the identity

$$(x \cdot y) \cdot (z \cdot t) = (x \cdot z) \cdot (y \cdot t).$$

Commutative binary modes (A, \cdot) are binary modes with a commutative multiplication, i.e. satisfying the identity

$$x \cdot y = y \cdot x$$
.

The class \mathcal{CBM}_{cl} of cancellative commutative binary modes is a subquasivariety of the variety \mathcal{CBM} of commutative binary modes defined by the quasi-identity

$$xy = xz \rightarrow y = z$$
.

The class \mathcal{CBM}_{ir} of irregular commutative binary modes is a subquasivariety of the variety \mathcal{CBM} defined by the quasi-identity

$$xy = x \rightarrow x = y$$
.

Regularization and Quasi-regularization

The regularization $\widetilde{\mathcal{V}}$ of an irregular idempotent variety \mathcal{V} of groupoids is the smallest variety containing both \mathcal{V} and the variety \mathcal{S} of semilattices.

The quasi-regularization \mathcal{Q}^q of an irregular idempotent quasivariety \mathcal{Q} of groupoids is the smallest quasivariety containing both \mathcal{Q} and \mathcal{S} . If \mathcal{Q} is a variety \mathcal{V} , its quasi-regularization $\widetilde{\mathcal{V}}^q$ does not necessary coincide with its regularization $\widetilde{\mathcal{V}}$.

For any variety $C_m = C_{2k+1} = \mathcal{V}((\mathbb{Z}_{2k+1}, \underline{k+1}))$, the following conditions are equivalent:

- (a) The quasi-regularization $\widetilde{\mathbb{C}}_m^q$ consists of Płonka sums of groupoids in \mathbb{C}_m with injective Płonka homomorphisms;
- (b) $\widetilde{\mathbb{C}}_m^q = \mathsf{SP}(\mathbb{C}_m \cup \mathbb{S});$
- (c) $\widetilde{\mathbb{C}}_m^q$ is the subquasivariety of $\widetilde{\mathbb{C}}_m$ defined by the quasi-identity (α_m) ;
- (d) $\widetilde{\mathbb{C}}_m^q = \mathsf{P}_\mathsf{s}(\{\mathbb{Z}_{p^j} \mid p^j | m\} \cup \{2_s\})$, i.e. $\widetilde{\mathbb{C}}_m^q$ is generated by all its subdirectly irreducible algebras.

For a groupoid A and the trivial groupoid $\mathbf{1}=(\{\infty\},\cdot)$, the symbol A^{∞} denotes the Płonka sum of $A_1=A$ and $A_0=\{\infty\}$ over the semilattice $\mathbf{2}_s$.

Lemma

Let $m = p_1^{j_1} \dots p_r^{j_r}$, where all p_i are odd prime numbers.

(a)
$$\widetilde{\mathbb{C}}^q_m = \mathsf{SP}(\mathbb{Z}_{p_1^{j_1}}, \dots, \mathbb{Z}_{p_r^{j_r}}, \mathbf{2}_s).$$

(b) For $0 < k_i \le j_i$, the groupoid $\mathbb{Z}_{p_i^{k_i}}^{\infty}$ does not belong to $\widetilde{\mathbb{C}}_m^q$.

Theorem

For any variety $\mathbb{C}_m = \mathbb{C}_{2k+1}$, the lattice $\mathcal{L}_q(\widetilde{\mathbb{C}}_m^q)$ of subquasivarieties of the quasi-regularization $\widetilde{\mathbb{C}}_m^q$ is isomorphic to $\mathcal{L}(\mathbb{C}_m) \times \mathbf{2}_l$, the direct product of the lattice of subvarieties of \mathbb{C}_m and the 2-element lattice $\mathbf{2}_l$.

For a prime number p:

Rysunek : Subquasivarieties of $\widetilde{\mathbb{C}}_p^q$

Let $p \geq 3$ be a prime number. The lattice $\mathcal{L}_q(\widetilde{\mathbb{C}}_p)$ of subquasivarieties of the regularization $\widetilde{\mathbb{C}}_p$ consists of the five members displayed in Figure:

Rysunek : Subquasivarieties of $\widetilde{\mathbb{C}}_p$

Let
$$m = p_1^{j_1} \dots p_r^{j_r}$$
. Then

$$\widetilde{\mathbb{C}}_m = \mathsf{SP}(\mathsf{Z}^\infty_{p_1^{j_1}}, \dots, \mathsf{Z}^\infty_{p_r^{j_r}}).$$

Lemma

Let $m=p_1^{j_1}\dots p_r^{j_r}$. Let $\mathfrak Q$ be a subquasivariety of the regularization $\widetilde{\mathbb C}_m$ not contained in $\widetilde{\mathbb C}_n$ for a proper divisor n of m. Then $\mathfrak Q$ contains $\widetilde{\mathbb C}_m^q$. Moreover, $\mathfrak Q$ is generated by the subdirectly irreducible $\mathbb C_m$ -groupoids $\mathbf Z_{p_i^{j_i}}$ for $i=1,\ldots,r$ and a subset of subdirectly irreducible $\widetilde{\mathbb C}_m$ -groupoids of the form $\mathbf Z_{p_i^{k_i}}^\infty$, where $k_i\leq j_i$.

Let $p \ge 3$ be a prime number and $j \ge 2$ an integer. Then for $i = 1, \dots, j$,

$$\widetilde{\mathbb{C}}_{p^j}^q = \mathfrak{Q}(\mathsf{Z}_{p^j}, \mathsf{2}_s) = \mathfrak{Q}(\mathsf{Z}_{p^j}, \mathsf{Z}_{p^0}^{\infty}) < \mathfrak{Q}(\mathsf{Z}_{p^j}, \mathsf{Z}_{p^1}^{\infty}) < \dots$$

$$\dots < \mathfrak{Q}(\mathsf{Z}_{p^j}, \mathsf{Z}_{p^i}^{\infty}) < \dots < \mathfrak{Q}(\mathsf{Z}_{p^j}, \mathsf{Z}_{p^i}^{\infty}) = \widetilde{\mathbb{C}}_{p^j}.$$

Each quasivariety $Q(\mathbf{Z}_{p^i}, \mathbf{Z}_{p^i}^{\infty})$ is defined by the quasi-identity $(\beta_{p,i})$. Moreover, the quasivarieties $Q(\mathbf{Z}_{p^i}, \mathbf{Z}_{p^i}^{\infty})$, for $i = 1, \ldots, j$, form a strictly increasing chain of pairwise distinct subquasivarieties of the regularization $\widetilde{\mathbb{C}}_{p^i}$ properly containing the quasiregularization $\widetilde{\mathbb{C}}_{p^i}^q$.

Let $m=p_1^{j_1}\dots p_r^{j_r}$. Let $\mathfrak{Q}=\mathfrak{Q}(\mathbf{Z}_m,\ \mathbf{Z}_{p_1^{s_1}}^{\infty},\dots,\mathbf{Z}_{p_r^{s_r}}^{\infty})$, where $0\leq s_i\leq j_i$ for $i\in\{1,\dots,r\}$ be a subquasivariety of $\widetilde{\mathfrak{C}}_m$ containing $\widetilde{\mathfrak{C}}_m^q$. We will denote:

$$\mathbf{Q}(0,\ldots,0)=\widetilde{\mathfrak{C}}_{m}^{q},$$

$$\mathbf{Q}(s_1,\ldots,s_r)=\mathbb{Q},$$

and

$$\mathbf{Q}(j_1,\ldots,j_r)=\widetilde{\mathfrak{C}}_m.$$

Let $m = p_1^{j_1} \dots p_r^{j_r}$. Then for a fixed $i \in \{1, \dots, r\}$, one has

$$\mathbf{Q}(j_1,\ldots,j_{i-1},0,j_{i+1},\ldots,j_r) < \mathbf{Q}(j_1,\ldots,j_{i-1},1,j_{i+1},\ldots,j_r) < \ldots$$

$$< \mathbf{Q}(j_1,\ldots,j_{i-1},s_i,j_{i+1},\ldots,j_r) < \ldots < \mathbf{Q}(j_1,\ldots,j_{i-1},j_i,j_{i+1},\ldots,j_r)$$

Each quasivariety $\mathbf{Q}(j_1,\ldots,j_{i-1},s_i,j_{i+1},\ldots,j_r)$, where $s_i=0,1,\ldots,j_i$, is defined by (β_{p_i,s_i}) . The quasivarieties $\mathbf{Q}(j_1,\ldots,j_{i-1},s_i,j_{i+1},\ldots,j_r)$ form a strictly increasing chain of subquasivarieties of the regularization $\widetilde{\mathbb{C}}_m$ containing the quasivariety $\mathbf{Q}(j_1,\ldots,j_{i-1},0,j_{i+1},\ldots,j_r)$.

Let $\mathcal{L}^{>q}(\widetilde{\mathbb{C}}_m)$ denote the lattice of subquasivarieties of $\widetilde{\mathbb{C}}_m$ containing $\widetilde{\mathbb{C}}_m^q$.

Lemma

Let $m = p_1^{j_1} \dots p_r^{j_r}$. Then the lattice $\mathcal{L}^{>q}(\widetilde{\mathbb{C}}_m)$ is isomorphic to the lattice of all divisors of m.

Let us define a certain new lattice K(m). For $m = p_1^{m_1} \dots p_r^{m_r}$, the set K(m) is the set of functions

$$f:\{0,1,\ldots,2r\}\to\mathbb{N}$$

satisfying the following conditions:

- $f(0) \in \{0, 1\}$,
- ullet for all $i=1,\ldots,r$, one has $f(i)=j_i$, where $0\leq j_i\leq m_i$,
- ullet for all $i=r+1,\ldots,2r$, one has $f(i)=s_i$, where $0\leq s_i\leq j_i$,
- if f(0) = 0, then f for all $i = r + 1, \ldots, 2r$, one has f(i) = 0.

K(m) is an ordered set with bounds $(0, \ldots, 0)$ and $(1, m_1, \ldots, m_r, m_1, \ldots, m_r)$.

The set K(m) is a distributive lattice with respect to the following operations:

$$(f \vee g)(i) = \max\{f(i), g(i)\}, \ (f \wedge g)(i) = \min\{f(i), g(i)\},$$

where $i \in \{0, 1, ..., 2r\}$.

Theorem

The lattice $\mathcal{L}_q(\widetilde{\mathbb{C}}_m)$ of subquasivarieties of the regularization $\widetilde{\mathbb{C}}_m$ is isomorphic to the lattice K(m).

Thank you for your attention.