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Digital image

Definition

A digital space is a directed graph without loops. The nodes are
called pixels and the binary relation is called an adjacency.

Here
we admit only symmetric adjacencies. A digital image is triple
(V , π, f ) where (V , π) is a digital space and f : V → (C ,≤) is an
assignment of colors. (C ,≤) is a poset with the greatest element
>.

A paradigmatic digital space is a digitization of an Euclidean
space. Each pixel represents a subset of the space and the
adjacency reflects a property of being zero-distant.The digital
image is supposed to represent a distribution of a physical quantity
over a real or virtual digitized space.
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Jan Pavĺık Segmentation of an Image Using Free Distributive Lattices



Introduction to digital geometry
Affinital segmentation

Generalization of the method

Digital image
Segmentation and thresholding

Digital image

Definition

A digital space is a directed graph without loops. The nodes are
called pixels and the binary relation is called an adjacency. Here
we admit only symmetric adjacencies. A digital image is triple
(V , π, f ) where (V , π) is a digital space and f : V → (C ,≤) is an
assignment of colors. (C ,≤) is a poset with the greatest element
>.

A paradigmatic digital space is a digitization of an Euclidean
space. Each pixel represents a subset of the space and the
adjacency reflects a property of being zero-distant.The digital
image is supposed to represent a distribution of a physical quantity
over a real or virtual digitized space.
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Image segmentation

Image segmentation aims to decompose the image into
meaningful parts (called here admissible sets) which represent
objects in the original space.
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Thresholding

Given an image I = (V , π, f ) and a color c ∈ C , then the set
fc = f −1(↑ c) = {x ∈ V |f (x) ≥ c} is called a c-cut of I. It yields
a segmentation where each admissible set is either a singleton or a
π-connected component of fc .

The corresponding equivalence relation is

(x , y) ∈ ρc ⇔ exists a π-path γ : x  π y with s(γ) ≥ c .

Here s(γ) = min{f (z)|z ∈ γ} for a nontrivial path and s(γ) = >
for a trivial path (total connectedness of a path).
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Segmentation by thresholding

One can find object within the image if the threshold is selected

some clever way.
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Jan Pavĺık Segmentation of an Image Using Free Distributive Lattices



Introduction to digital geometry
Affinital segmentation

Generalization of the method

Digital image
Segmentation and thresholding

Segmentation by thresholding

One can find object within the image if the threshold is selected

some clever way.

Jan Pavĺık Segmentation of an Image Using Free Distributive Lattices



Introduction to digital geometry
Affinital segmentation

Generalization of the method

Digital image
Segmentation and thresholding

Segmentation by thresholding

One can find object within the image if the threshold is selected

some clever way.
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Similarity criterion

A collection of quantities determining inclusion of a pixel into an
object can be merged into a single mapping – a criterion
ξ : V 2 → (P,≤) to some (finite) poset.

Example: consider the graph distance d in the digital space and 3
channels R,G,B as functions V → {0, . . . , 255} (referred to as
initial quantities), then we can take, e.g.,
ξ(x , y) = (d(x , y), |R(x)− R(y)|, |G (x)− G (y)|, |B(x)− B(y)|)
Since the order on R4 is not linear, the question arises, how to treat
the criterion to get admissible sets corresponding to such situation.
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Linear affinity

The method of fuzzy affinity by Rosenfeld improved by Carvalho,
Kong and Herman is based on linearization of the set (P,≤). We
suitably transform the initial quantities, so that their average gives
us a function of affinity ψ : V 2 → 〈0, 1〉 which measures a local
similarity between pixels. This function may reflect properties of
object we are to find. We add requirements:

ψ(x , y) = ψ(y , x),

ψ(x , x) = 1,

(x , y) 6∈ π ⇒ ψ(x , y) = 0

Example: in case of the previous example we may use
ψ(x , y) = 3

3+R(x ,y)+R(x ,y)+B(x ,y) if d(x , y) = 1.
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Connectedness function

If ψ is seen as a measure of how much the pixels are held together,
it makes sense to consider such a quantity along a path as a
minimum of ψ of all consecutive pairs - this value expresses the
connectedness of the whole path.

This idea can be used for all
paths γ : x  y hence we can define the total connectedness of
elements x and y as

µ(x , y) = max
γ:x y

min
(u,v)∈S(γ)

ψ(u, v)

where S(γ) is a set of all pairs of consecutive elements along the
path γ.
If the path γ is seen as a chain and ψ(u, v) as a strength of the
link (u, v), then µ(x , y) is the strength of the strongest chain
connecting x and y .
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Fuzzy segmentation

For each x0 ∈ V , there is a function µ(x0,−) : V → 〈0, 1〉 which
determines a ”hope” of x , that if x0 is in the sought object then x
belongs to it as well.

Hence we may choose a threshold t ∈ 〈0, 1〉 and do a thresholding
of V .

Theorem

Carvalho, Kong, Herman Given a digital image on a set V with an
affinity ψ : V 2 → P satisfying the properties above, then for each
t ∈ 〈0, 1〉 there is a partition of V whose classes are closed under
local connectedness at the level t.
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Nonlinear extension of fuzzy-affinitial method

The disadvantage of the method is the linearization which
necessarily loses information on incomparability. It adds new
comparisons which may result in undesired sets.

To overcome that,
we create a new connectedness function directly from ξ. In order
to do that we rewrite the essence of the method.
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Essence of the fuzzy thresholding

Given an affinity and its connectedness function, then, for a pair of
elements x0, x1, we can find a minimal object Ω(x0, x1) which
contains both of them.

One can see that

Ω(x0, x1) = {y |µ(x0, y) ≥ µ(x0, x1)} = µ(x0,−)µ(x0,x1).

Thus this set contains all elements y which are connected to x0 at
least as strongly as x0 to x1. Ternary relation of tightness

Φ = {(x0, x1, y)|y ∈ Ω(x0, x1)}

captures the whole essence of the afinitial method.
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Derivation of the essence for a general case

(x0, x1, y) ∈ Φ

⇔ y ∈ Ω(x0, x1)
⇔ µ(x0, y) ≥ µ(x0, x1)
⇔ max

γ:x0 y
min

(u,v)∈S(γ)
ψ(u, v) ≥ max

δ:x0 x1

min
(p,q)∈S(δ)

ψ(p, q)

⇔ ∀δ ∈ Q(x0, x1)∃γ ∈ Q(x0, y)∀(u, v) ∈ S(γ)∃(p, q) ∈ S(δ)
ψ(u, v) ≥ ψ(p, q)

where Q(x , z) denotes the set of all paths x  z in the complete
graph on V (i.e. arbitrary finite injective sequences with given
endpoints). We have expressed Φ without the use of linearity and
ψ can be replaced by ξ.
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Function of general connectedness

The obtained condition can be rewriten in terms of upper sets as
follows:

↑ {↑ {ξ(p, q)|(p, q) ∈ S(γ)}|γ : x0  y} ⊆

⊆↑ {↑ {ξ(u, v)|(u, v) ∈ S(δ)}|δ : x0  x1}

This enables to define the total connectedness of general
elements x , z ∈ V as
κ(x , z) =↑ {↑ {ξ(p, q)|(p, q) ∈ S(γ)}|γ : x  z} which yields

(x0, x1, y) ∈ Φ⇔ κ(x0, y) ≥ κ(x0, x1).
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Lattice of upper sets

As we see, in order to describe the resulting entity κ we need
double process of creation of upper sets.

Generally, given a poset (S ,≤), let U(S ,≤) denotes the set of all
nonempty upper sets of S . We may repeat this procedure again to
obtain a poset W(S ,≤) = U(U(S ,≤). One can derive, from the
properties of U , that W(S ,≤) is distributive lattice. Moreover we
have isotone injection η : (S ,≤)→W(S ,≤) given by composition
of two antitone injections. It has a universal property which makes
W(S ,≤) a free distributive lattice over poset (S ,≤).
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Free distributive lattice over a poset

Consider the categories DLat and Pos of distributive lattices and
posets, respectively. The obvious forgetful functor
Z : DLat → Pos has a left adjoint W : Pos → DLat, i.e., for
every poset (S ,≤) there exists a distributive lattice W(S ,≤) and
isotone mapping η : (S ,≤)→ ZW(S ,≤) such that for every Q
and every φ : (S ,≤)→ ZQ there exists a unique lattice
homomorphism φ̃ :W(S ,≤)→ Q such that φ = Z φ̃ ◦ η. The
situation is depicted by:

Pos DLat

(S ,≤)
η //

∀2φ ((RRRRRRRRRRRRRRR ZW(S ,≤)

Z φ̃
���
�
�

Z (Q)

W(S ,≤)
∃3φ̃ //______ ∀1Q
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Thresholding by free terms

We return to the poset (P,≤) and the derived assignment κ of
total connectedness. We obtain a mapping

κ : V 2 →W(P,≤).

Since the elements of W(P,≤) can be seen as terms, we can write

κ(x , y) =
∨

γ:x y

∧
(u,v)∈S(γ)

ξ(u, v).

In order to apply this for thresholding, it is advantageous to
employ the theory of L-fuzzy relations.
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L-fuzzy equivalence

Given a complete distributive lattice L, then a mapping ρ : V 2 → L
can be seen as binary L-fuzzy relation on L. It is reflexive if
ρ(x , x) = > and transitive if ρ(x , y) ∨ ρ(y , z) ≤ ρ(x , z). A
reflexive, symmetric, transitive L-fuzzy relation is called L-fuzzy
equivalence.

Properties of L-fuzzy equivalence

Every reflexive symmetric L-fuzzy relation ρ generates an
L-fuzzy equivalence ρ(x , y) =

∨
γ:x y

∧
(u,v)∈S(γ) ρ(u, v).

Every L-fuzzy equivalence σ gives rise, for every threshold
t ∈ L, an equivalence relation σt = {(x , y) ∈ V 2|σt(x , y) ≥ t}
Every L-fuzzy equivalence σ induces a collection of L-fuzzy
sets (an L-fuzzy partition of V ) whose cuts, for any t ∈ L are
partitions of V .
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Jan Pavĺık Segmentation of an Image Using Free Distributive Lattices



Introduction to digital geometry
Affinital segmentation

Generalization of the method

Delinearization
Free distributive lattice over poset
L-fuzzy equivalence
L-fuzzy segmentation

L-fuzzy equivalence

Given a complete distributive lattice L, then a mapping ρ : V 2 → L
can be seen as binary L-fuzzy relation on L. It is reflexive if
ρ(x , x) = > and transitive if ρ(x , y) ∨ ρ(y , z) ≤ ρ(x , z). A
reflexive, symmetric, transitive L-fuzzy relation is called L-fuzzy
equivalence.

Properties of L-fuzzy equivalence

Every reflexive symmetric L-fuzzy relation ρ generates an
L-fuzzy equivalence ρ(x , y) =

∨
γ:x y

∧
(u,v)∈S(γ) ρ(u, v).

Every L-fuzzy equivalence σ gives rise, for every threshold
t ∈ L, an equivalence relation σt = {(x , y) ∈ V 2|σt(x , y) ≥ t}
Every L-fuzzy equivalence σ induces a collection of L-fuzzy
sets (an L-fuzzy partition of V ) whose cuts, for any t ∈ L are
partitions of V .
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Collective similarity

Given t ∈ P, let C (t) be the relation on V of ”being similar at
least on the level t” containing all pair (x , y) such that ξ(x , y) ≥ t.

Given a term τ =
∨

i∈{1,...,n}

∧
j∈{1,...,mi}

si ,j ∈ W(P,≤) then for each i

there is a set Ei =
⋃

j∈{1,...,mi} C (si ,j). Then κ(x , y) ≥ τ (written
as (x , y) ∈ C (τ)) iff x and y are connected by a path in graph
(V ,Ei ) for each i . The relation (x , y) ∈ C (τ) now means ”x is
connected to y at on the collective level τ”.
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L-fuzzy segmentation

Now we see that κ is exactly the L-fuzzy equivalence generated by
the criterion ξ. Then C (τ) is a cut of κ by a threshold
τ ∈ W(P,≤), thus it is an equivalence relation. Hence κ produces
an L-partition and consequently a partition of the image. Its
classes are of the form θ(x , τ) = {y ∈ V |κ(x , y) ≥ τ}, which are
classes of collective similarity C (τ).

Theorem

Given a digital image on a set V with a criterion ξ : V 2 → P
satisfying the properties above, then for each term τ ∈ W(P,≤)
there is a partition of V whose classes are closed under
connectivity at least at the collective level τ .

Jan Pavĺık Segmentation of an Image Using Free Distributive Lattices



Introduction to digital geometry
Affinital segmentation

Generalization of the method

Delinearization
Free distributive lattice over poset
L-fuzzy equivalence
L-fuzzy segmentation

Example

Here the criterion ξ : V 2 → Z2 consists of a pair of distance and
brightness with reversed order. The threshold is here ((1, 3) ∧
(2, 1))∨ ((1, 3)∧ (3, 0))∨ (2, 2)∨ ((3, 1)∧ (4, 0))∨ ((1, 1)∧ (6, 0)).
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