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Enumerating small groups

1..10 1 1 1 2 1 2 1 5 2 2
11..20 1 5 1 2 1 14 1 5 1 5
21..30 2 2 1 15 2 2 5 4 1 4
31..40 1 51 1 2 1 14 1 2 2 14
41..50 1 6 1 4 2 2 1 52 2 5
51..60 1 5 1 15 2 13 2 2 1 13
61..70 1 2 4 267 1 4 1 5 1 4
71..80 1 50 1 2 3 4 1 6 1 52
81..90 15 2 1 15 1 2 1 12 1 10

91..100 1 4 2 2 1 231 1 5 2 16

(Besche, Eick, O’Brien around 2000: a table up to 2047)

size p: Zp

size p2: Zp2 ,Z2
p

size 2p: Z2p,D2p

Methods: deep structure theory and efficient programming
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Enumerating small quasigroups
quasigroup = latin square
loop = quasigroup with a unit

loops quasigroups

1 1 1
2 1 1
3 1 5
4 2 35
5 6 1411
6 109 1130531
7 23746 12198455835
8 106228849 2697818331680661
9 9365022303540 15224734061438247321497

10 20890436195945769617 2750892211809150446995735533513

(McKay, Meynert, Myrvold 2007)

Methods: smart combinatorics and efficient programming
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Quandles
Quandle is an algebra Q = (Q, ∗) such that for every x , y , z ∈ Q

x ∗ x = x (idempotent)

there is a unique u such that x ∗ u = y (unique left division)

x ∗ (y ∗ z) = (x ∗ y) ∗ (x ∗ z) (selfdistributivity)

Observe:

translations Lx(y) = x ∗ y are permutations

multiplication group LMlt(Q) = 〈Lx : x ∈ Q〉 is a permutation group

quandles = idempotent binary algebras with LMlt(Q) ≤ Aut(Q).

Example: group conjugation x ∗ y = y x = xyx−1

Motivation:

coloring knots, braids

Hopf algebras, discrete solutions to the Yang-Baxter equation

combinatorial algebra: a natural generalization of selfdistributive
quasigroups
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Enumerating quandles: elementary approach

1 1 3 7 22 73 298 1581 11079

exhaustive search over all tables: Mace4 up to size 7

exhaustive search over all permutations: Ho, Nelson up to size 8

smarter elementary approach: McCarron up to size 9

Our idea:

think about the orbit decomposition of Q by LMlt(Q)

find a representation theorem

count the configurations

Our results: two special cases

algebraically connected quandles = with a single orbit, up to size 35

medial quandles (in a sense the abelian case), up to size 13

David Stanovský (Prague/Almaty) Enumerating quandles 5 / 13



Enumerating quandles: elementary approach

1 1 3 7 22 73 298 1581 11079

exhaustive search over all tables: Mace4 up to size 7

exhaustive search over all permutations: Ho, Nelson up to size 8

smarter elementary approach: McCarron up to size 9

Our idea:

think about the orbit decomposition of Q by LMlt(Q)

find a representation theorem

count the configurations

Our results: two special cases

algebraically connected quandles = with a single orbit, up to size 35

medial quandles (in a sense the abelian case), up to size 13
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Connected quandles
= LMlt(Q) is transitive on Q

Galkin quandles: Gal(G ,H, ϕ) = (G/H, ∗), xH ∗ yH = xϕ(x−1)ϕ(y)H,

G is a group, H its subgroup

ϕ ∈ Aut(G ), ϕ|H = id

Canonical representation: Q ' Gal(LMlt(Q),LMlt(Q)e ,−Le )

quandle envelope = (G , ζ) such that

G a transitive group,

ζ ∈ Z (Ge) such that 〈ζG 〉 = G

Theorem (HSV)

There is 1-1 correspondence connected quandles ↔ quandle envelopes

quandles to envelopes: Q 7→ (LMlt(Q), Le)

envelopes to quandles: (G , ζ) 7→ Gal(G ,Ge ,−ζ)
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Enumerating connected quandles

1..10 1 0 1 1 3 2 5 3 8 1
11..20 9 10 11 0 7 9 15 12 17 10
21..30 9 0 21 42 34 0 65 13 27 24
31..35 29 17 11 0 15

(Vedramin 2012 / HSV independently)

We count all quandle envelopes, using the full list of transitive groups of
degree n ≤ 35 (Hulpke 2005).
Important trick: we have an efficient isomorphism theorem for envelopes.

Using deep theory of transitive groups:

size p: only affine, p − 2 (Etingof, Soloviev, Guralnick 2001)

size p2: only affine, 2p2 − 3p − 1 (Graña 2004)

size 2p: none for p > 5 (McCarron / HSV)
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Connected quandles, prime size

Theorem (Etingof-Soloviev-Guralnik)

Connected quandles of prime size are affine.

Proof using envelopes.

LMlt(Q) is a transitive group acting on a prime number of elements,
hence LMlt(Q) is primitive.
A theorem of Kazarin says that if G is a group, a ∈ G , |aG | is a prime

power, then 〈aG 〉 is solvable. In our case |LLMlt(Q)
e | = |Q| is prime, hence

LMlt(Q) = 〈Lζe〉 is solvable.
A theorem attributed to Galois says that primitive solvable groups are
affine, hence LMlt(Q) is affine, and so is Q.
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Medial quandles

= satisfying (x ∗ y) ∗ (u ∗ v) = (x ∗ u) ∗ (y ∗ v) for every x , y , u, v

= 〈LxL−1
y : x , y ∈ Q〉 ≤ LMlt(Q) is an abelian group

Example: affine quandles
Aff(G , ϕ) = (G , ∗) with x ∗ y = (1− ϕ)(x) + ϕ(y),
where G is an abelian group, ϕ ∈ Aut(G )

Fact

A connected quandle is medial iff affine.

Connected quandles of prime size: Aff(Zp, k) with k = 2, . . . , p − 1.
(Classification of affine quandles up to p4 by Hou 2011.)

Fact

Orbits in medial quandles are affine quandles.
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The structure of medial quandles
affine mesh = triple ((Ai )i∈I , (ϕi ,j)i ,j∈I , (ci ,j)i ,j∈I ) indexed by I where

Ai are abelian groups

ϕi ,j : Ai → Aj homomorphisms

ci ,j ∈ Aj constants

such that for every i , j , j ′, k ∈ I

1− ϕi ,i is an automorphism of Ai

ci ,i = 0

ϕj ,kϕi ,j = ϕj ′,kϕi ,j ′ (they commute naturally)

ϕj ,k(ci ,j) = ϕk,k(ci ,k − cj ,k)

sum of an affine mesh = disjoint union of Ai , for a ∈ Ai , b ∈ Aj

a ∗ b = ci ,j + ϕi ,j(a) + (1− ϕj ,j)(b)

Theorem (JPSZ)

An algebra is a medial quandle if and only if it is the sum of an affine mesh.
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Enumerating medial quandles

medial quandles quandles

1 1 1
2 1 1
3 3 3
4 6 7
5 18 22
6 58 73
7 251 298
8 1410 1581
9 10311 11079

10 98577
11 1246488
12 20837449
13 466087635
14 13943042???

We count all affine meshes, using an efficient isomorphism theorem.
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Reductive medial quandles
Surprizingly, there is an important special case.

A medial quandle is called 2-reductive if following equivalent cond’s hold:

(x ∗ y) ∗ y = y

all compositions of right translations RuRv are constant

in the mesh representation, ϕi ,j = 0 for every i , j

2-reductive medial quandles have very combinatorial character, they are
merely just tables of numbers (operation a ∗ b = b + ci ,j , no conditions
upon ci ,j except ci ,i = 0).

We count them by Burnside’s theorem.

”Almost every” medial quandle is 2-reductive.

The numbers of non-2-reductive, and non-n-reductive (for any n) ones:

1 2 3 4 5 6 7 8 9 10 11 12 13 14

0 0 1 1 3 3 5 12 10 45 9 278 11 ?
0 0 1 1 3 1 5 3 10 3 9 8 11 ?
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Enumerating assymptotically

Theorem (Blackburn 2013)

For every c1 <
1
4 and every c2 >

1
6 log2 24 + 1

2 log2 3 ≈ 1.5566

2c1n2
< the number of quandles < 2c2n2

.

Lower bound: take n/2 copies of Z2, think about all n
2 ×

n
2 0,1-matrices

(ci ,j) with ci ,i = 0: there is 2
1
4

(n2−n) of them, hence at least

2
1
4

(n2−n)/n! = 2
1
4
n2−O(n log n)

isomorphism classes of 2-reductive (involutory) medial quandles

Upper bound: we can prove there is at most 2( 1
4

+o(1))n2
2-reductive m.q.

Conjecture

The upper bound (in medial case) is c2 = 1
4 + o(1).
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