On *t*-filters on Residuated Lattices (AAA88)

Martin Víta, MU Brno

20.6.2014

Martin Víta, MU Brno On *t*-filters on Residuated Lattices (AAA88) ▲口 ▶ ▲圖 ▶ ▲ 臣 ▶ ▲ 臣 ● ⑦ � @ ◆

Definition of a Residuated Lattice

Definition

A bounded pointed commutative integral residuated lattice is a structure

$$\mathbf{L} = (L, \&, \rightarrow, \wedge, \vee, \overline{0}, \overline{1})$$

(日) (同) (三) (三)

3

of type (2, 2, 2, 2, 0, 0) which satisfies the following conditions:
(i) (L, ∧, ∨, 0, 1) is a bounded lattice.
(ii) (L, &, 1) is a monoid.
(iii) (&, →) form an adjoint pair, i.e. x & z ≤ y if and only if z ≤ x → y for all x, y, z ∈ L.

Martin Víta, MU Brno

E 990

イロン イ団 とくほ とくほとう

Definition of a Filter

Definition

A non-empty subset F of L is called a *filter* on L if following conditions hold for all $x, y \in L$:

(i) if
$$x, y \in F$$
, then $x \& y \in F$,
(ii) if $x \in F$, $x \le y$, then $y \in F$.

Martin Víta, MU Brno

Special Types of Filters

Definition

A nonempty subset F of a BL-algebra **L** called a *fantastic* filter if it satisfies:

$$1 \ \overline{1} \in F$$

2
$$z \to (y \to x) \in F$$
 and $z \in F$ imply $((x \to y) \to y) \to x \in F$ for all x, y, $z \in A$.

Other types of filters such as implicative, positive implicative, ... filters are defined similarly by replacing the second condition by some different one.

Summary of Some Existing Results - Example I.

Theorem (Haveshki, Eslami, Saeid (2006))

On BL-algebra L, the following statements are equivalent:

- **1** $\{\overline{1}\}$ is a fantastic filter.
- **2** Every filter on **L** is a fantastic filter.
- **3** L is an MV-algebra.

MV-algebras are just BL-algebras satisfying $\neg \neg x = x$.

Core

Motivation – Example I'

Theorem

On BL-algebra L, the following statements are equivalent:

- **1** $\{\overline{1}\}$ is an implicative filter.
- 2 Every filter on L is an implicative filter.
- **3** L is a Gödel algebra.

Gödel algebras are just BL-algebras satisfying x & x = x.

Motivation – Example II

Theorem

Let F, G be filters on BL-algebra L such that $F \subseteq G$. If F is a fantastic filter, then G is a fantastic filter.

Motivation – Example II'

Theorem

Let F, G be filters on BL-algebra L such that $F \subseteq G$. If F is an implicative filter, then G is an implicative filter.

Motivation – Example III

Theorem

Let F be a filter of (a BL-algebra) L. Then F is a fantastic filter if and only if every filter of the quotient algebra L/F is a fantastic filter.

A (1) > A (1) > A

3 x 3

Motivation – Example III'

Theorem

Let F be a filter of (a BL-algebra) L. Then F is an implicative filter if and only if every filter of the quotient algebra L/F is an implicative filter.

Core

Alternative Definitions of Special Types of Filters

Theorem (Kondo and Dudek (2008))

Let **L** be a BL-algebra, $F \subseteq L$ a filter on **L**. Then F is a fantastic filter iff for all $x \in L$, $\neg \neg x \rightarrow x \in F$ and F is an implicative filter iff for all $x \in L$, $x \rightarrow x \& x \in F$.

Starting now, **L** is a residuated lattice.

Generalization: *t*-filters

Definition

Let t be an arbitrary term. A filter F on L is a t-filter if $t(\overline{x}) \in F$ for all $\overline{x} \in L$.

 \overline{x} is an abbreviation for a list x, y, \ldots . Since now, t is a fixed term.

∃ 990

Generalization of the Extension Theorems

Theorem

Let F and G be filters on a residuated lattice **L** such that $F \subseteq G$. If F is a *t*-filter, then so is G.

Generalization of the Triple of Equivalent Characteristics

Theorem

Let \mathbb{B} be a variety of residuated lattices and $L \in \mathbb{B}$. Moreover let \mathbb{C} be a subvariety of \mathbb{B} which we get by adding the equation in the form $t = \overline{1}$. Then the following statements are equivalent:

- **1** $\{\overline{1}\}$ is a *t*-filter.
- 2 Every filter on L is a t-filter.
- 3 L is in C.

э

< 回 > < 三 > < 三 >

э

Generalization of the Quotient Characteristics

Theorem

Let F be a filter on a residuated lattice **L**. Then F is a t-filter if and only if every filter of the quotient algebra \mathbf{A}/F is a t-filter.

Simple Observations

- 1-filters are just filters on L, x-filters are just trivial filters.
- If $t_1(x) \le t_2(x)$ for all $x \in L$, then $\{F \subseteq L \mid F \text{ is a } t_1\text{-filter}\} \subseteq \{F \subseteq L \mid F \text{ is a } t_2\text{-filter}\}.$

t-filters and Extended Filters

Definition (Kondo (2013))

Let *B* be an arbitrary nonempty subset of *L*, *F* filter on **L**. The set $E_F(B) = \{x \in L \mid \forall b \in B(x \lor b \in F)\}$ is called *extended filter* associated with *B*.

Theorem (Kondo (2013))

Let F be a filter on L. Then:

- F is an implicative filter if and only if $E_F(x \to x^2) = L$ for all $x \in L$
- F is a fantastic filter if and only if $E_F(\neg \neg x \rightarrow x) = L$ for all $x \in L$

Generalization for t-filters

Theorem

Let F be a filter on L, t a term. Then F is a t-filter if and only if $E_F(t(x)) = L$ for all $x \in L$.

Proof.

Let x be an arbitrary element of L, F be a t-filter. Since F is a t-filter, then $t(x) \in F$, thus for every element y of L is $y \lor t(x) \in F$, thus $y \in E_F(t(x))$, i.e., $E_F(t(x)) = L$. Conversely, if $E_F(t(x)) = L$, then $\overline{0} \in E_F(t(x))$, therefore $\overline{0} \lor t(x) = t(x) \in F$. QED

(日) (同) (三) (三)

э

Martin Víta, MU Brno

I-filters and Possible Generalizations

I-filters defined by Z. M. Ma and B. Q. Hu (2014) are just special cases of *t*-filters (...) Possible Generalizations: replace the condition $t(\overline{x}) \in F$ by condition in form if $t_1(\overline{x}) \in F$ and $t_2(\overline{x}) \in F$ and ..., then $t(\overline{x}) \in F$ and start dealing with quasivarieties.

Acknowledgement

Thank you for your attention!

・ロト・西ト・ヨト・ヨー 今日の