On SI-groups

R. R. Andruszkiewicz and M. Woronowicz

University of Białystok

20.06.2014

For an arbitrary abelian group A and a prime number p we define a p-component A_p of the group A:

$$A_p = \{ a \in A : p^n a = 0, \text{ for some } n \in \mathbb{N} \}.$$

Often we will use the designation:

$$\mathbb{P}(A) = \{ p \in \mathbb{P} : o(a) = p, \text{ for some } a \in A \}.$$

The torsion part of A is denoted by T(A).

For an arbitrary abelian group A and a prime number p we define a p-component A_p of the group A:

$$A_p = \left\{ a \in A: \ p^n a = 0, \, \text{for some} \ n \in \mathbb{N} \right\}.$$

Often we will use the designation:

$$\mathbb{P}(A) = \{ p \in \mathbb{P} : o(a) = p, \text{ for some } a \in A \}.$$

The torsion part of A is denoted by T(A).

Definition 1

Let (A, +, 0) be an abelian group. An operation $*: A \times A \rightarrow A$ is called a ring multiplication, if for all $a, b, c \in A$ there holds

$$a*(b+c) = a*b + a*c \ and \ (b+c)*a = b*a + c*a.$$

The algebraic system (A, +, *, 0) is called a ring.

Definition 2

Let A be an abelian group. If on A there does not exist any nonzero ring multiplication, then A is called a nil-group. If on A there does not exist any nonzero associative ring multiplication, then we say that A is a nil_a-group.

Definition 2

Let A be an abelian group. If on A there does not exist any nonzero ring multiplication, then A is called a nil-group. If on A there does not exist any nonzero associative ring multiplication, then we say that A is a nil_a-group.

Remark

Every nil-group is a nil_a-group. Every torsion nil_a-group is a nil-group, by Theorem 3.4 in [1] and Theorem 120.3 in [4]. By Theorem 4.1 in [1], a mixed nil_a-group does not exist. It is easily seen that every ring multiplication on arbitrary subgroup of the group \mathbb{Q}^+ is associative and that every abelian torsion-free group of the rank 1 can be embedded in the group \mathbb{Q}^+ . Thus, the concepts of nil_a-group and nil-group are equivalent also in the class of abelian torsion-free groups of rank 1. In the light of the available literature, it is not known whether there exists a torsion-free nil_a-group A of rank more than 1 such that A is not a nil-group.

Definition 3

A ring in which every subring is an ideal (two-sided) is called an SI-ring. An abelian group A is called an SI-group, if every ring R with $R^+ = A$ is an SI-ring.

Definition 3

A ring in which every subring is an ideal (two-sided) is called an SI-ring. An abelian group A is called an SI-group, if every ring R with $R^+ = A$ is an SI-ring.

Definition 4

An abelian group A is called an SI_H -group, if every associative ring R with $R^+ = A$ is an H-ring.

Definition 3

A ring in which every subring is an ideal (two-sided) is called an SI-ring. An abelian group A is called an SI-group, if every ring R with $R^+ = A$ is an SI-ring.

Definition 4

An abelian group A is called an SI_H -group, if every associative ring R with $R^+ = A$ is an H-ring.

Remark

Obviously, every SI-group is an SI_H -group. There exist mixed SI_H -groups which are not SI-groups.

Example 5

It is easily seen that $Z(p^n)$ is an SI_H -group for all prime numbers p and positive integers n.

Example 5

It is easily seen that $Z(p^n)$ is an SI_H -group for all prime numbers p and positive integers n.

Lemma 6

A direct summand of an SI_H -group is an SI_H -group.

Example 5

It is easily seen that $Z(p^n)$ is an SI_H -group for all prime numbers p and positive integers n.

Lemma 6

A direct summand of an SI_H -group is an SI_H -group.

Proof

Let A and B be abelian groups and let $G = A \oplus B$. Suppose that A is not an SI_H -group. Then there exists an associative ring S with $S^+ = A$ such that S is not an H-ring. Since every subring of an H-ring is an H-ring, $R = S \oplus B^0$ is not an H-ring, and consequently, G is not an SI_H -group.

Corollary 7

Every torsion-free SI_H -group is reduced.

Corollary 7

Every torsion-free SI_H-group is reduced.

Lemma 8

Let R be an associative ring with $R^+ = A$ and let M be a left-sided R-module. If $R \circ M \neq \{0\}$, then $A \oplus M$ is not an SI_H -group.

Corollary 7

Every torsion-free SI_H-group is reduced.

Lemma 8

Let R be an associative ring with $R^+ = A$ and let M be a left-sided R-module. If $R \circ M \neq \{0\}$, then $A \oplus M$ is not an SI_H -group.

Proof

Let
$$S = \begin{pmatrix} R & M \\ 0 & 0 \end{pmatrix}$$
. Then S is an associative ring with $S^+ \cong A \oplus M$ and

$$T = \begin{pmatrix} R & 0 \\ 0 & 0 \end{pmatrix}$$
 is a subring of S satisfying $TS \not\subseteq T$. Thus $T \not\triangleleft S$.

Examples/Torsion SI_H -groups

Corollary 9

From the above lemma we obtain at once that:

- $\mathbb{Z}^+ \oplus A$ is not an SI_H -group for an arbitrary abelian group A;
- $Z(p^m) \oplus Z(p^n)$ is not an SI_H -group for all positive integers m, n.

Examples/Torsion SI_H-groups

Corollary 9

From the above lemma we obtain at once that:

- $\mathbb{Z}^+ \oplus A$ is not an SI_H -group for an arbitrary abelian group A;
- $Z(p^m) \oplus Z(p^n)$ is not an SI_H -group for all positive integers m, n.

Theorem 10 (S. Feigelstock)

A nontrivial torsion abelian group A is an SI_H -group if and only if each of its nontrivial p-components A_p satisfies one of the following conditions:

- (i) $A_p = Z(p^n)$, n a positive integer;
- (ii) $A_p = Z(p^n) \oplus D$, with D a divisible p-group and n = 0 or n = 1.

Examples/Torsion SI_H -groups

Corollary 9

From the above lemma we obtain at once that:

- $\mathbb{Z}^+ \oplus A$ is not an SI_H -group for an arbitrary abelian group A;
- $Z(p^m) \oplus Z(p^n)$ is not an SI_H -group for all positive integers m, n.

Theorem 10 (S. Feigelstock)

A nontrivial torsion abelian group A is an SI_H -group if and only if each of its nontrivial p-components A_p satisfies one of the following conditions:

- (i) $A_p = Z(p^n)$, n a positive integer;
- (ii) $A_p = Z(p^n) \oplus D$, with D a divisible p-group and n = 0 or n = 1.

Theorem 11 (S. Feigelstock)

The torsion part of an SI_H -group is an SI_H -group.

Theorem 12 (S. Feigelstock)

If A is mixed SI_H-group, then $T(A) = \bigoplus_{p \in \mathbb{P}(A)} Z(p^{n_p})$, where n_p is a positive integer for all $p \in \mathbb{P}(A)$.

Theorem 12 (S. Feigelstock)

If A is mixed SI_H-group, then $T(A) = \bigoplus_{p \in \mathbb{P}(A)} Z(p^{n_p})$, where n_p is a positive integer for all $p \in \mathbb{P}(A)$.

Remark

In [2] we proved a more accurate version of the above theorem. Namely, we obtained $n_p = 1$, for all $p \in \mathbb{P}(A)$.

Theorem 12 (S. Feigelstock)

If A is mixed SI_H-group, then $T(A) = \bigoplus_{p \in \mathbb{P}(A)} Z(p^{n_p})$, where n_p is a positive integer for all $p \in \mathbb{P}(A)$.

Remark

In [2] we proved a more accurate version of the above theorem. Namely, we obtained $n_p = 1$, for all $p \in \mathbb{P}(A)$.

The following proposition was useful in our proof:

Proposition 13 (R. R. Andruszkiewicz and M. Woronowicz)

Let p and n be a prime number and a positive integer, respectively. Let A be an abelian group such that $A_p \neq \{0\}$ or $T(A) \neq A$. If $n \geq 2$, then $R = \mathbb{Z}_{p^n} \oplus A^0$ is not an H-ring.

Proof

Take any $a \in A$. Let $\alpha = (p^{n-1}, a)$. Then $\alpha^2 = 0$, because $n \ge 2$. Therefore $[\alpha] = \langle \alpha \rangle$. Suppose, contrary to our claim, that $(1,0)\alpha \in [\alpha]$. Then there exists $k \in \mathbb{Z}$ such that $(p^{n-1},0) = k(p^{n-1},a)$. Hence $p^{n-1} = kp^{n-1}$ and 0 = ka. If $o(a) = \infty$, then from the equality ka = 0 it follows that k = 0. Thus $p^{n-1} = 0$ in \mathbb{Z}_{p^n} , a contradiction. If o(a) = p, then $p \mid k$. So there exists $l \in \mathbb{Z}$ such that k = lp. Therefore $p^{n-1} = kp^{n-1} = lp^n = 0$ in \mathbb{Z}_{p^n} , a contradiction. Thus $(1,0)\alpha \notin [\alpha]$.

Proof

Take any $a \in A$. Let $\alpha = (p^{n-1}, a)$. Then $\alpha^2 = 0$, because $n \ge 2$. Therefore $[\alpha] = \langle \alpha \rangle$. Suppose, contrary to our claim, that $(1,0)\alpha \in [\alpha]$. Then there exists $k \in \mathbb{Z}$ such that $(p^{n-1},0) = k(p^{n-1},a)$. Hence $p^{n-1} = kp^{n-1}$ and 0 = ka. If $o(a) = \infty$, then from the equality ka = 0 it follows that k = 0. Thus $p^{n-1} = 0$ in \mathbb{Z}_{p^n} , a contradiction. If o(a) = p, then $p \mid k$. So there exists $l \in \mathbb{Z}$ such that k = lp. Therefore $p^{n-1} = kp^{n-1} = lp^n = 0$ in \mathbb{Z}_{p^n} , a contradiction. Thus $(1,0)\alpha \not\in [\alpha]$.

Theorem 14 (R. R. Andruszkiewicz and M. Woronowicz)

Let $\emptyset \neq P \subseteq \mathbb{P}$ and let A be an SI_H -group satisfying A = pA and $A_p = \{0\}$, for all $p \in P$. Then $G = (\bigoplus_{p \in P} Z(p)) \oplus A$ is an SI_H -group.

Proposition 15 (R. R. Andruszkiewicz and M. Woronowicz)

Let H be an abelian group satisfying $H_p = \{0\}$ and $H \neq pH$ for some $p \in \mathbb{P}$. If $\dim_{\mathbb{Z}_p} H/pH \geq 2$, then $G = \mathbb{Z}_p^+ \oplus H$ is not an SI_H -group.

Proposition 15 (R. R. Andruszkiewicz and M. Woronowicz)

Let H be an abelian group satisfying $H_p = \{0\}$ and $H \neq pH$ for some $p \in \mathbb{P}$. If $\dim_{\mathbb{Z}_p} H/pH \geq 2$, then $G = \mathbb{Z}_p^+ \oplus H$ is not an SI_H -group.

Lemma 16 (S. Feigelstock)

If A is an SI_H -group, then every p-component A_p of A is a direct summand of A.

Proposition 15 (R. R. Andruszkiewicz and M. Woronowicz)

Let H be an abelian group satisfying $H_p = \{0\}$ and $H \neq pH$ for some $p \in \mathbb{P}$. If $\dim_{\mathbb{Z}_p} H/pH \geq 2$, then $G = \mathbb{Z}_p^+ \oplus H$ is not an SI_H -group.

Lemma 16 (S. Feigelstock)

If A is an SI_H -group, then every p-component A_p of A is a direct summand of A.

Theorem 17 (R. R. Andruszkiewicz and M. Woronowicz)

Let G be a mixed SI_H -group and let $p \in \mathbb{P}(A)$. Then there exists $H \leq G$ such that $G = G_p \oplus H$, where $H = \langle h \rangle + pH$, for some $h \in H$.

Mixed SIH-groups

Proof

It follows from Lemma 16 that there exists $H \leq G$ such that $G = G_p \oplus H$. If H = pH, then $H = \langle h \rangle + pH$, for all $h \in H$. If $H \neq pH$, then $\dim_{\mathbb{Z}_p} H/pH = 1$, by Proposition 15. Hence $H = \langle h \rangle + pH$, for all $h \in H \setminus pH$.

Proof

It follows from Lemma 16 that there exists $H \leq G$ such that $G = G_p \oplus H$. If H = pH, then $H = \langle h \rangle + pH$, for all $h \in H$. If $H \neq pH$, then $\dim_{\mathbb{Z}_p} H/pH = 1$, by Proposition 15. Hence $H = \langle h \rangle + pH$, for all $h \in H \setminus pH$.

Remark

It follows from Theorem 12 and Remark 8 that $G_p = Z(p)$, hence pG = pH. If $H \neq pH$, then the subgroup H is not uniquely determined. In fact, let $K = \langle (a,h) \rangle + pH$, for some $0 \neq a \in G_p$, $h \in H \setminus pH$. Then $G = G_p + K$. Suppose that $k(a,h) + (0,ph_1) = I(a,0)$, for some $k,l \in \mathbb{Z}$, $h_1 \in H$. Then ka = la and $kh + ph_1 = 0$, hence $k \equiv I \pmod{p}$ and $kh = -ph_1 \in pH$. As $h \in H \setminus pH$ we have $p \mid k$. Therefore $G_p \cap K = \{0\}$. Moreover $(a,h) \notin H$, so $K \neq H$.

20.06.2014

Proposition 18 (R. R. Andruszkiewicz and M. Woronowicz)

Let H be a nil_a -group with $H_p = \{0\}$, for some $p \in \mathbb{P}$. If there exists $h_0 \in H$ such that $H = \langle h_0 \rangle + pH$, then $G = Z(p) \oplus H$ is an SI_H -group.

Proposition 18 (R. R. Andruszkiewicz and M. Woronowicz)

Let H be a nil_a -group with $H_p = \{0\}$, for some $p \in \mathbb{P}$. If there exists $h_0 \in H$ such that $H = \langle h_0 \rangle + pH$, then $G = Z(p) \oplus H$ is an SI_H -group.

Now, we prove a fact about subgroups of the group \mathbb{Q}^+ , which will be applied in the next example of mixed SI_{H^-} group:

Lemma 19

If A is a subgroup of the group \mathbb{Q}^+ satisfying $A \neq pA$, for some $p \in \mathbb{P}$, then $A/pA \cong Z(p)$. In particular, $A = pA + \langle a \rangle$, for all $a \in A \setminus pA$.

Proof

Suppose, contrary to our claim, that $\dim_{\mathbb{Z}_p} A/pA \geq 2$. Then there exist $a_1, a_2 \in A \setminus pA$ such that $a_1 + pA$, $a_2 + pA$ are linearly independent over the field \mathbb{Z}_p . Let $n = \min \left\{ m \in \mathbb{N} : ma_1 \in \langle a_2 \rangle \right\}$. Then $na_1 = ka_2$, for some $k \in \mathbb{Z}$. Thus $n(a_1 + pA) - k(a_2 + pA) = pA$, hence $p \mid n$ and $p \mid k$. Therefore $n = pn_1$ and $k = pk_1$, for some $n_1 \in \mathbb{N}$, $k_1 \in \mathbb{Z}$. Moreover, A is torsion-free, and consequently, $n_1a_1 = k_1a_2$, which contradicts the minimality of the number n. Therefore $\dim_{\mathbb{Z}_p} A/pA = 1$, hence $A/pA \cong Z(p)$.

Proof

Suppose, contrary to our claim, that $\dim_{\mathbb{Z}_p} A/pA \geq 2$. Then there exist $a_1, a_2 \in A \setminus pA$ such that $a_1 + pA$, $a_2 + pA$ are linearly independent over the field \mathbb{Z}_p . Let $n = \min \left\{ m \in \mathbb{N} : ma_1 \in \langle a_2 \rangle \right\}$. Then $na_1 = ka_2$, for some $k \in \mathbb{Z}$. Thus $n(a_1 + pA) - k(a_2 + pA) = pA$, hence $p \mid n$ and $p \mid k$. Therefore $n = pn_1$ and $k = pk_1$, for some $n_1 \in \mathbb{N}$, $k_1 \in \mathbb{Z}$. Moreover, A is torsion-free, and consequently, $n_1a_1 = k_1a_2$, which contradicts the minimality of the number n. Therefore $\dim_{\mathbb{Z}_p} A/pA = 1$, hence $A/pA \cong Z(p)$.

Example 20

Let H be a nil-subgroup of the group \mathbb{Q}^+ such that $H \neq pH$ for some $p \in \mathbb{P}$. Then there exists $h_0 \in H \setminus qH$, hence $H = \langle h_0 \rangle + pH$, by Lemma 19. Moreover $H_p = \{0\}$, so it follows from Proposition 18 that $Z(p) \oplus H$ is an SI_H -group.

Torsion-free *SI_H*-groups

Theorem 21 (R. R. Andruszkiewicz and M. Woronowicz)

Let A be an abelian torsion-free group. Then A is an SI_H -group if and only if either A is a nil_a -group or $A \cong \mathbb{Z}^+$.

Torsion-free *SI_H*-groups

Theorem 21 (R. R. Andruszkiewicz and M. Woronowicz)

Let A be an abelian torsion-free group. Then A is an SI_H -group if and only if either A is a nil_a -group or $A \cong \mathbb{Z}^+$.

Remark

The proof of this theorem relies on important results about H-rings obtained by the R. L. Kruse in [5].

Torsion-free *SI_H*-groups

Theorem 21 (R. R. Andruszkiewicz and M. Woronowicz)

Let A be an abelian torsion-free group. Then A is an SI_H -group if and only if either A is a nil_a -group or $A \cong \mathbb{Z}^+$.

Remark

The proof of this theorem relies on important results about H-rings obtained by the R. L. Kruse in [5].

Corollary 22

The converse theorem to Theorem 17 is not true. In fact, let p and q be distinct prime numbers and let $H = \left[\frac{1}{q}\right]^+$. Then $H \neq pH$, so $H = \langle h \rangle + pH$, for some $h \in H \setminus pH$, by Lemma 19. But H is not an SI_H -group by Theorem 21, so it follows from Lemma 6 that $G = Z(p) \oplus H$ is not an SI_H -group.

SI-groups

Lemma 23 (R. R. Andruszkiewicz and M. Woronowicz)

Let both A and H be abelian groups. If A is not a nil-group and A is a homomorphic image of H, then $A \oplus H$ is not an SI-group.

SI-groups

Lemma 23 (R. R. Andruszkiewicz and M. Woronowicz)

Let both A and H be abelian groups. If A is not a nil-group and A is a homomorphic image of H, then $A \oplus H$ is not an SI-group.

Proof

Let $f: H \to A$ be an epimorphism. Let R be a ring such that $R^+ = A$ and $R^2 \neq \{0\}$. It is easy to check that the operation

*: $(A \oplus H) \times (A \oplus H) \rightarrow (A \oplus H)$ defined by:

$$(a_1, x_1) * (a_2, x_2) = (a_1 f(x_2) + a_2 f(x_1), 0), \text{ for all } a_1, a_2 \in A, x_1, x_2 \in H$$

is a ring multiplication on the group $A \oplus H$. Since $R^2 \neq \{0\}$, there exist $a,b \in A$ such that $a \cdot b \neq 0$. Let $y \in f^{-1}(\{b\})$. Then $(0,y)^2 = (0,0)$, so $[(0,y)] = \langle (0,y) \rangle$ and $(a,0)*(0,y) = (a \cdot f(y),0) = (a \cdot b,0) \notin [(0,y)]$. Therefore [(0,y)] is not an ideal of the ring R.

SI-groups vs. SI_H -groups

Corollary 24

Let H be an abelian group such that $H \neq pH$, for some $p \in \mathbb{P}$. Then $Z(p) \oplus H$ is not an SI-group.

SI-groups vs. SI_H -groups

Corollary 24

Let H be an abelian group such that $H \neq pH$, for some $p \in \mathbb{P}$. Then $Z(p) \oplus H$ is not an SI-group.

Remark

From the above corollary and Example 20 it follows, that the class of all SI-group is a proper subclass of the class of all SI_H -group.

SI-groups vs. SI_H -groups

Corollary 24

Let H be an abelian group such that $H \neq pH$, for some $p \in \mathbb{P}$. Then $Z(p) \oplus H$ is not an SI-group.

Remark

From the above corollary and Example 20 it follows, that the class of all SI-group is a proper subclass of the class of all SI_H -group.

Consider the following statement:

Corollary 25 (S. Feigelstock)

Let G be an SI_H -group, and let p be a prime for which $G_p \neq \{0\}$. Then $G = G_p \oplus H$, for some subgroup H of G such that H = pH

SI-groups vs SI_H -groups

Remark

It turns out that the ring multiplication constructed by S. Feigelstock in the proof of Corollary 25 (cf. Corollary 11 in [3]) is not associative. Therefore Feigelstock's proof provides the truth for this corollary for SI-groups referred to in the Definition 3. Example 20 shows, that Corollary 25 is false in the class of SI_H -grups. In addition $G_p = Z(p)$, by Remark 4 and Theorem 12, hence H = pG.

Also the other Feigelstock's results based on Corollary 25 are proved only for SI-groups and some of them are false in the class of SI_H -grups (cf. [2]).

References

- R. R. Andruszkiewicz, M. Woronowicz, On associative ring multiplication on abelian mixed groups, Comm. Algebra 42 (2014), No. 9, 3760-3767.
- [2] R. R. Andruszkiewicz, M. Woronowicz, *On SI-groups*, submitted paper;
- [3] S. Feigelstock, *Additive groups of rings whose subrings are ideals*, Bull. Austral. Math. Soc. **55** (1997), 477-481.
- [4] L. Fuchs, *Infinite abelian groups volume 2*, Academic Press, New York, London, 1973.
- [5] R. L. Kruse, Rings in which all subrings are ideals, Canad. J. Math. 20 (1968) 862-871.

Thank you for your attention!