Generalized Płonka Sums

Marek Zawadowski

University of Warsaw

88th Workshop on General Algebra June 20, 2014

Operations on algebras induced by operations on universes

- **T** equational theory
- ullet Alg(T) category of algebras of the theory T

• Examples: products $|A \times B| \xrightarrow{\cong} |A| \times |B|$, limits, filtered colimits, reduced products, ultraproduct

Operations on algebras induced by operations on universes

- **T** equational theory
- ullet Alg(T) category of algebras of the theory T

$$\begin{array}{c|c} Alg(\mathbf{T}) \times Alg(\mathbf{T}) & \xrightarrow{\times} & Alg(\mathbf{T}) \\ U \times U & & \downarrow U \\ Set \times Set & \xrightarrow{\times} & Set \end{array}$$

• Examples: products $|A \times B| \xrightarrow{\cong} |A| \times |B|$, limits, filtered colimits, reduced products, ultraproduct

Operations on algebras induced by operations on universes

- T equational theory
- ullet Alg(T) category of algebras of the theory T

- Examples: products $|A \times B| \xrightarrow{\cong} |A| \times |B|$, limits, filtered colimits, reduced products, ultraproduct
- No-Examples: coproducts...but

Operations on algebras induced by operations on universes

- T equational theory
- ullet Alg(T) category of algebras of the theory T

$$Alg(\mathbf{T})^{\mathbf{C}} \xrightarrow{\bar{\mathcal{O}}} Alg(\mathbf{T})$$

$$U^{\mathbf{C}} \downarrow \qquad \qquad \downarrow U$$

$$Set^{\mathbf{C}} \xrightarrow{\mathcal{O}} Set$$

- Examples: products $|A \times B| \xrightarrow{\cong} |A| \times |B|$, limits, filtered colimits, reduced products, ultraproduct
- No-Examples: coproducts...but
- Płonka sums...

- L sup-semilattice (\vee, \perp)
- $D: L \longrightarrow Alg(T)$ functor L-diagram of T-algebras
- $\coprod^P D$ Płonka sum of D
- universe $|\coprod^P D| = \coprod_{I \in L} |D(I)|$

- L sup-semilattice (\vee, \perp)
- $D: L \longrightarrow Alg(T)$ functor L-diagram of T-algebras
- $\coprod^P D$ Płonka sum of D
- universe $|\coprod^P D| = \coprod_{I \in L} |D(I)|$

- L sup-semilattice (\vee, \perp)
- $D: L \longrightarrow Alg(T)$ functor L-diagram of T-algebras
- $\coprod^P D$ Płonka sum of D
- universe $|\coprod^P D| = \coprod_{I \in L} |D(I)|$

- L sup-semilattice (\vee, \perp)
- $D: L \longrightarrow Alg(T)$ functor L-diagram of T-algebras
- $\coprod^P D$ Płonka sum of D
- universe $|\coprod^P D| = \coprod_{I \in L} |D(I)|$

$$\begin{vmatrix}
I & I & I & I & I & I \\
I & I & I & I & I & I \\
I & I & I & I & I & I \\
I & I & I & I & I & I \\
I & I & I & I & I & I \\
I & I & I & I & I & I \\
I & I & I & I & I & I \\
I & I & I & I & I & I \\
I & I & I & I & I & I \\
I & I & I & I & I & I \\
I & I & I & I & I & I \\
I & I & I & I & I & I \\
I & I & I & I & I & I \\
I & I & I & I & I & I \\
I & I & I & I & I & I \\
I & I & I & I & I & I \\
I & I & I & I & I & I \\
I & I & I & I & I \\
I & I & I & I & I \\
I & I & I & I & I \\
I & I & I & I & I \\
I & I & I & I & I \\
I & I & I & I & I \\
I & I & I & I & I \\
I & I & I & I & I \\
I & I & I \\
I & I & I & I \\
I & I & I$$

- L sup-semilattice (\vee, \perp)
- $D: L \longrightarrow Alg(T)$ functor L-diagram of T-algebras
- $\coprod^P D$ Płonka sum of D
- universe $|\coprod^P D| = \coprod_{I \in L} |D(I)|$

$$egin{aligned} egin{aligned} egin{aligned\\ egin{aligned} egi$$

$$\begin{vmatrix}
I & I_1 & I_2 & \dots & I_n \\
I & I_n & \dots & \dots & I_n
\end{vmatrix}$$

• $D(I_i \leq I) : D_{I_i} \rightarrow D_I$

- L sup-semilattice (\vee, \perp)
- $D: L \longrightarrow Alg(T)$ functor L-diagram of T-algebras
- $\coprod^P D$ Płonka sum of D
- universe $|\coprod^P D| = \coprod_{I \in L} |D(I)|$

- $D(I_i \leq I) : D_{I_i} \rightarrow D_I$
- $b_i := D(I_i \leq I)(a_i) \in D_I$

- L sup-semilattice (\vee, \perp)
- $D: L \longrightarrow Alg(T)$ functor L-diagram of T-algebras
- $\coprod^P D$ Płonka sum of D
- universe $|\coprod^P D| = \coprod_{I \in L} |D(I)|$

- $D(I_i \leq I) : D_{I_i} \rightarrow D_I$
- $b_i := D(I_i \leq I)(a_i) \in D_I$

- L sup-semilattice (\vee, \perp)
- $D: L \longrightarrow Alg(T)$ functor L-diagram of T-algebras
- $\prod^P D$ Płonka sum of D
- universe $|\coprod^P D| = \coprod_{I \in L} |D(I)|$

- $D(I_i \leq I) : D_{I_i} \rightarrow D_I$
- $b_i := D(I_i \leq I)(a_i) \in D_I$
- $f^{\coprod^{P}D}(a_1,\ldots,a_n):=b$

Theorem [J. Płonka 1967]

If T is regular, then Płonka sum of T algebras is a T-algebra.

• Why regular theories?

- Why regular theories?
- Why sup-semilattices?

- Why regular theories?
- Why sup-semilattices?
- The theory of sup-semilattices is the terminal object in the category of regular theories, i.e. there is a unique regular interpretation from any regular theory to the theory of sup-semilattices. We can take any regular interpretation
 I: R → T between regular theories instead!

- Why regular theories?
- Why sup-semilattices?
- The theory of sup-semilattices is the terminal object in the category of regular theories, i.e. there is a unique regular interpretation from any regular theory to the theory of sup-semilattices. We can take any regular interpretation
 I: R → T between regular theories instead!
- ② Any **T**-algebra A gives rise to a Płonka sum on the category of algebras $Alg(\mathbf{R})$ with the arity being the category of regular polynomial over A. Any sup-semilattice is a posetal reflection of its category of regular polynomials.

- Why regular theories?
- Why sup-semilattices?
- The theory of sup-semilattices is the terminal object in the category of regular theories, i.e. there is a unique regular interpretation from any regular theory to the theory of sup-semilattices. We can take any regular interpretation
 I: R → T between regular theories instead!
- ② Any \mathbf{T} -algebra A gives rise to a Płonka sum on the category of algebras $Alg(\mathbf{R})$ with the arity being the category of regular polynomial over A. Any sup-semilattice is a posetal reflection of its category of regular polynomials.
- As Płonka sum is induced by an operation on universes of algebras, it is given by a morphism of monads. This allows us for some simplifications: to consider free algebras only and move between algebras over different categories (the rest will be taken care off by 'abstract nonsense').

Plan of the talk

Plan

- The category of regular equational theories
- Monads and their algebras
- The category of semi-analytic monads
- More on morphisms of monads
- Oategory of regular polynomials over an algebra
- Morphism of monads that induce (generalized) Płonka sums
- Examples

• L - signature

- L signature
- $\vec{x}^n = x_1, \dots, x_n$ context is

- L signature
- $\vec{x}^n = x_1, \dots, x_n$ context is
- A regular term in context

$$t: \vec{x}^n$$

is a term such that variables that occurs in t are exactly \vec{x}^n ;

- L signature
- $\vec{x}^n = x_1, \dots, x_n$ context is
- A regular term in context

$$t: \vec{x}^n$$

is a term such that variables that occurs in t are exactly \vec{x}^n ;

A regular equation in context

$$s = t : \vec{x}^n$$

if both $s: \vec{x}^n$ and $t: \vec{x}^n$ are regular terms in context

- L signature
- $\vec{x}^n = x_1, \dots, x_n$ context is
- A regular term in context

$$t: \vec{x}^n$$

is a term such that variables that occurs in t are exactly \vec{x}^n ;

A regular equation in context

$$s = t : \vec{x}^n$$

if both $s: \vec{x}^n$ and $t: \vec{x}^n$ are regular terms in context

• $T = \langle L, A \rangle$ is a regular equational theory, if A is a set of regular equations in contexts over signature L.

- L signature
- $\vec{x}^n = x_1, \dots, x_n$ context is
- A regular term in context

$$t: \vec{x}^n$$

is a term such that variables that occurs in t are exactly \vec{x}^n ;

• A regular equation in context

$$s = t : \vec{x}^n$$

if both $s: \vec{x}^n$ and $t: \vec{x}^n$ are regular terms in context

- $T = \langle L, A \rangle$ is a regular equational theory, if A is a set of regular equations in contexts over signature L.
- A regular interpretation of regular equational theories $\mathbf{I}: \mathbf{T} \to \mathbf{T}'$ sends n-ary symbols f in L to regular terms in contexts $\mathbf{I}(f): \vec{x}^n$ in \mathbf{T}' so that for any equation $s=t: \vec{x}^n$ in \mathbf{T} we have

$$T \vdash \mathbf{I}(s) = \mathbf{I}(t) : \vec{x}^n$$

Monads (on *Set*)

For any equational theory T, the forgetful functor $\mathcal U$ has a left adjoint $\mathcal F$, the free T-algebra functor:

$$Alg(\mathbf{T}) \xrightarrow{\mathcal{U}} Set$$

Thus $\mathcal{F}(X)$ is the free **T**-algebra on the set X. It can be constructed as the set of terms with additional constants from the set X divided by the provable equality in theory T. The unit of the adjunction

$$\eta_X:X\to \mathcal{UF}(X)$$

is an embedding of generators, and the counit

$$\varepsilon_{A}:\mathcal{F}\mathcal{U}(A)\to A$$

is an evaluation of the terms over the universe of A in algebra A.

Monads (on Set)

definition

The composed endofunctor $\mathcal{T}=\mathcal{UF}: Set \to Set$ together with natural transformations $\eta: 1_{Set} \to \mathcal{T}$ and $\mu=\mathcal{U}\varepsilon\mathcal{F}: \mathcal{T}^2 \to \mathcal{T}$ make the diagrams

commute. The left square expresses the fact that 'evaluation commutes with substitution'.

A monad on the category Set is an endofunctor $\mathcal T$ on Set together with two natural transformations η and μ as above making the above diagrams commute.

Algebras for monads

An algebra for a monad $\mathcal T$ or $\mathcal T$ -algebra is a set A (the universe of the algebra) together with a function (structure map) $\alpha:\mathcal T(A)\to A$ such that

commutes.

Algebras for monads

An algebra for a monad $\mathcal T$ or $\mathcal T$ -algebra is a set A (the universe of the algebra) together with a function (structure map) $\alpha:\mathcal T(A)\to A$ such that

commutes. A morphism of \mathcal{T} -algebras $h:(A,\alpha)\to (A',\alpha')$ is a function $h:A\to A'$ compatible with the structure maps.

Algebras for monads

An algebra for a monad $\mathcal T$ or $\mathcal T$ -algebra is a set A (the universe of the algebra) together with a function (structure map) $\alpha:\mathcal T(A)\to A$ such that

commutes. A morphism of \mathcal{T} -algebras $h:(A,\alpha)\to (A',\alpha')$ is a function $h:A\to A'$ compatible with the structure maps. So we have the categories of algebras for monad $Alg(\mathcal{T})$ as well.

Semi-analytic monads

The monads (\mathcal{R}, η, μ) arising from regular equational theories **T** are more special then arbitrary monads on Set. They are characterized by some additional abstract conditions (finitary, preserves pullbacks along monomorphisms). They have much more specific presentations. There is a functor

$$R: \mathbb{S} \to Set$$

where \mathbb{S} of finite sets $\underline{n} = \{1, \dots, n\}$ and surjections to Set $(R(\underline{n}))$ is the set of regular terms in context \vec{x}^n divided by provable equations), for set X,

$$\mathcal{R}(X) = \sum_{n \in \omega} \left[\begin{array}{c} X \\ n \end{array} \right] \otimes_n R_n$$

where

- $\begin{bmatrix} X \\ n \end{bmatrix}$ is the set of monomorphisms from \underline{n} to X
- ullet \otimes_n is the tensor over symmetric group S_{n-1}

The category of semi-analytic monads

A morphism of monads $\tau: (\mathcal{T}, \eta, \mu) \to (\mathcal{T}', \eta', \mu')$ is a natural transformation $\tau: \mathcal{T} \to \mathcal{T}'$ compatible with η 's and μ 's, i.e. the diagram

commutes.

It induces a functor between categories of algebras:

$$Alg(\tau):Alg(\mathcal{T}')\longrightarrow Alg(\mathcal{T})$$

$$(A, \alpha : \mathcal{T}'(A) \to A) \mapsto (A, \alpha \circ \tau_A : \mathcal{T}(A) \to A)$$

A morphism of semi-analytic monads τ is a morphism of monads such that naturality squares for monomorphisms are pullbacks.

12 / 22

Regular theories vs semi-analytic monads

Theorem (S. Szawiel, MZ)

The category **SanMnd** of semi-analytic monads on *Set* is equivalent to the category of regular theories **RegET**. This correspondence respects categories of algebras.

Moving between algebras over different categories more on morphisms of monads

We can consider morphism between monads defined on different categories. They induce functors between categories of algebras.

$$(\mathcal{T}, \eta, \mu) \xrightarrow{\mathcal{K}} C'$$

$$(\mathcal{T}, \eta, \mu) \xrightarrow{(\mathcal{K}, \tau)} (\mathcal{T}', \eta', \mu')$$

- 2 $\tau: \mathcal{TK} \to \mathcal{KT}'$ a natural transformation
- **3** compatible with η 's and μ 's, i.e. the diagram

$$\begin{array}{c|c}
K \xrightarrow{\eta_K} \mathcal{T}K \xrightarrow{\mu_K} \mathcal{T}^2K \\
K(\eta') & \downarrow \tau \\
K\mathcal{T}' \overleftarrow{\mathcal{K}(\mu')} K\mathcal{T}'^2
\end{array}$$

commutes.

Moving between algebras over different categories more on morphisms of monads

They induce functors between categories of algebras:

$$Alg(\tau):Alg(\mathcal{T}')\longrightarrow Alg(\mathcal{T})$$

is given by

$$\overline{\mathcal{K}}(A,\alpha:\mathcal{T}'(A)\to A)=(\mathcal{K}(A),\mathcal{T}\mathcal{K}(A)\stackrel{\tau_A}{\longrightarrow}\mathcal{K}\mathcal{T}'(A)\stackrel{\mathcal{K}(\alpha)}{\longrightarrow}\mathcal{K}(A))$$

Lift of a monad to the category of diagrams

If (\mathcal{T}, η, μ) is a monad on Set and C is a small category, then we have a monad $(\hat{\mathcal{T}}, \hat{\eta}, \hat{\mu})$ on Set^C , the *lift of the monad* \mathcal{T} *to* Set^C . It is defined by composition, for a functor $F: C \to Set$:

$$\hat{\mathcal{T}}(F) = \mathcal{T} \circ F, \quad \hat{\eta}_F = \eta_F : F \to \mathcal{T} \circ F, \quad \hat{\mu}_F = \mu_F : \mathcal{T}^2 \circ F \to \mathcal{T} \circ F$$

where $\hat{\eta}_F$ is the component of the natural transformation $\hat{\eta}$ at a functor F and η_F is the wiskering of the natural transformation $\eta: 1_{Set} \to \mathcal{T}$ along the functor F; the same applies to the definition of $\hat{\mu}$.

The category of algebras for the lifted monads $Alg(\hat{T})$ is equivalent to the category of C-diagrams of algebras for T, i.e. $Alg(T)^C$.

Category of regular polynomials over an algebra

Let $\mathcal{T}=(\mathcal{T},\eta,\mu)$ be a semi-analytic monad, $\mathcal{T}:\mathbb{S}\to Set$ the coefficient functor for \mathcal{T} so that for any set X

$$\mathcal{T}(X) = \sum_{n \in \omega} \left[\begin{array}{c} X \\ n \end{array} \right] \otimes_n \mathcal{T}_n$$

 $(A, \alpha : \mathcal{T}(A) \to A)$ and \mathcal{T} -algebra. We define a *category* **A** *of regular polynomials over* \mathcal{T} -algebra A.

The objects of $\bf A$ are elements of A. A morphism in $\bf A$ is an equivalence class of triples

$$[\vec{a}, i, r]_{\sim} : \vec{a}(i) \to \alpha([\vec{a}, r]_{\sim})$$

where $\vec{a} : \underline{n} \to A$ is an injection, $i \in \underline{n}$, $r \in T_n$, for some $n \in \omega$. Note that $[\vec{a}, r]_{\sim}$ is an element of $\mathcal{T}(A)$. We identify triples

$$\langle \vec{a} \circ \sigma, i, r \rangle \sim \langle \vec{a}, \sigma(i), T(\sigma)(r) \rangle$$

where $\sigma \in S_n$.

Generalized Płonka sum

- $\pi: \mathcal{R} \to \mathcal{T}$ a morphism of semi-analytic monads, defined by a natural transformation $\pi: R \to \mathcal{T}$ in $Set^{\mathbb{S}}$
- (A, α) be a \mathcal{T} -algebra
- A the category of regular polynomials over (A, α)
- $\hat{\mathcal{R}}$ is the lift of the monad \mathcal{R} to the category $Set^{\mathbf{A}}$

We shall define a morphism of monads

$$(\bigsqcup_{\mathbf{A}}, \lambda) : \mathcal{R} \to \hat{\mathcal{R}}$$

that gives rise to an operation

$$Alg(\mathcal{R})^{\mathbf{A}} \cong Alg(\hat{\mathcal{R}}) \longrightarrow Alg(\mathcal{R})$$

Generalized Płonka sum

Let $\mathbf{F}: \mathbf{A} \to Alg(\mathcal{R})$ be a functor, and $F: \mathbf{A} \to Set$ the composition of \mathbf{F} with the forgetful functor. We shall define the component

$$\lambda_F: \mathcal{R}(\coprod_{a\in A} F(a)) \longrightarrow \coprod_{a\in A} \mathcal{R}(F(a))$$

of λ

$$\lambda: \mathcal{R} \circ \bigsqcup_{\mathbf{A}} \longrightarrow \bigsqcup_{\mathbf{A}} \circ \hat{\mathcal{R}}$$

- $[\vec{x}, r]_{\sim} \in \mathcal{R}(\coprod_{a \in A} F(a))$
- $\vec{x}:(n] \to \coprod_{a \in A} F(a)$ is an injection
- $r \in R_n$
- $p: \coprod_{a \in A} F(a) \to A$ the projection from the coproduct to the index set

Generalized Płonka sum definition

- $\vec{a} \circ s$ a surjection-injection factorization of $p \circ \vec{x}$
- $\kappa_a : F(a) \to \coprod_{a \in A} F(a)$ is the injection into coproduct
- \bullet \vec{x}' the unique making the triangle in the middle commute
- We put

$$b = \alpha([\vec{a}, \pi_m(R(s)(r))])$$

and, for $i \in (n]$, we have a morphism

$$\psi_i = [\vec{a}, s(i), \pi_m(R(s)(r))] : \vec{a}(s(i)) \longrightarrow b$$

in the category A.

Generalized Płonka sum

Finally, we put

$$\lambda_F^{\mathcal{R}}([\vec{x},r]_{\sim}) = [\vec{z},R(g)(r)]_{\sim}$$

Theorem

 $(\bigsqcup_A, \lambda^{\mathcal{R}}) : \mathcal{R} \to \hat{\mathcal{R}}$ is a lax morphism of monads. \square

Examples

Examples

- ① Identity interpretation $1: \mathcal{R} \to \mathcal{R}$ of a semi-analytic monad \mathcal{R} . Płonka sum of identity interpretation over an \mathcal{R} -algebra A of a constant diagram F equal to an \mathcal{R} -algebra B is the product $A \times B$.
- ② The usual Płonka sum comes from the unique semi-analytic interpretation of a $\mathcal{R} \to \mathcal{S}$, of any semi-analytic monad in the monda for sup-semilattices.
- More sophisticated examples. Let 2S be the monad corresponding to the theory of two theories of sup-semilattices taken together. Let R be the monad arising from a regular theory that is a 'sum' of two regular equational theories (having nothing to do one with the other). Then we have morphism of semi-analytic monads R → 2S such that the two parts of R are interpreted in different parts of 2S.