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REAL AFFINE SPACES

Given a vector space (a module) A over a field

(a subring R of) R.

An affine space A over R (or affine R-space)

is the algebra(
A,

n∑
i=1

xiri

∣∣∣∣ n∑
i=1

ri = 1
)
.

This algebra is equivalent to

(A, P, R), (or to (A, R) if 2 is invertible in R),

where

R = {r | r ∈ R}, and xyzP = x− y + z

and

xyr = r(x, y) = x(1 − r) + yr.
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The class R of all affine R-spaces is a variety.

Abstractly, R is defined as the class of idempo-

tent entropic Mal’cev algebras (A, P, R) with a

ternary Mal’cev operation P and binary opera-

tions r for each r ∈ R, satisfying the identities:

xy0 = x = yx1,

xyp xyq r = xy pqr,

xyp xyq xyr P = xy pqrP .

for all p, q, r ∈ R.

The variety R satisfies also the entropic iden-

tities

xyp ztp q = xzq ytq p

for all p, q ∈ R and the cancellation laws

(xyp = xzp) → y = z

for all p ∈ R with p 6= 0.
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CONVEX SETS and
BARYCENTRIC ALGEBRAS

Let F be a subfield of R,
Io(F ) :=]0, 1[= (0, 1) ⊂ F and
I(F ) := [0, 1] ⊂ F .

Convex subsets of affine F -spaces are
Io(F )-subreducts (A, Io(F )) of F -spaces.

The class Cv(F ) of convex sets generates
the variety B(F ) of F -barycentric algebras
axiomatized by the following:

idempotence: xxp = x
(I),

skew-commutativity: xyp = xy1 − p =: xyp′

(SC),

skew-associativity: xyp z q = x yzq/(p ◦ q) p ◦ q
(SA)
for all p, q ∈ Io. Note that
p ◦ q = (p′q′)′ = p + q − pq.
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MODES

An algebra (A, Ω) is a mode if it is

• idempotent:

x...xω = x,

for each n-ary ω ∈ Ω, and

• entropic:

(x11...x1nω)...(xm1...xmnω) ϕ

= (x11...xm1ϕ)...(x1n...xmnϕ) ω.

for all ω, ϕ ∈ Ω.

Affine R-spaces and their subreducts (subal-

gebras of reducts) are modes. In particular,

F -barycentric algebras are modes.

6



F -BARYCENTRIC ALGEBRAS

Theorem The class Cv(F ) and the quasivari-
ety C(F ) of cancellative F -barycentric algebras
coincide.

Proposition The following conditions are equiv-
alent for any non-trivial subalgebra (A, Io(F ))
of (F, Io(F )):

(a) (A, Io(F )) is a line segment of (F, Io(F ));

(b) (A, Io(F )) is isomorphic to (I(F ), Io(F ));

(c) (A, Io(F )) is generated by two (different)
elements;

(d) (A, Io(F )) is a free algebra on two free gen-
erators in the quasivariety C(F ) and in the
variety B(F ).
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NOTE: The algebra (I(F ), Io(F )) embeds into
each non-trivial F -convex set.

Proposition The quasivariety C(F ) = Cv(F )
of F -convex sets is a minimal subquasivariety
of the variety B(F ).

In particular, C(F ) is generated by any one of
(F, Io(F )) and (I(F ), Io(F )).

Proposition Let R be a (unital) subring of R.
Then the free algebra over X in the quasivari-
ety of subreducts of a given type τ of affine R-
spaces is isomorphic to the τ-subreduct, gen-
erated by X, of the free affine R-space over
X.

The set of elements of the free Io(R)-algebra
over X = {x0, . . . , xn} coincides with the n-
dimensional simplex Sn(R) over R:

{x0a0 + · · · + xnan | ai ∈ I(R),
n∑

i=1

ai = 1}.



DYADIC CONVEX SETS

Consider the ring

D = Z[1/2] = {m2−n | m, n ∈ Z}
of dyadic rational numbers.

A dyadic convex set is the intersection of a
real convex set with the space Dk.

• Dyadic convex sets are subreducts (A, Io(D))
of affine D-spaces.

Proposition Each dyadic convex set (A, Io(D))
is equivalent to (A, ·) = (A, 1

2(x + y)).

The operation · is:

idempotent: x · x = x,

commutative: x · y = y · x,

entropic (medial): (x ·y) ·(z · t) = (x ·z) ·(y · t).

Hence the dyadic convex sets are commuta-
tive binary modes (or CB-modes).
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REAL VERSUS DYADIC

• Not each dyadic interval is isomorphic to the
interval I(D), and not each is generated by its
endpoints.

Example The dyadic interval [0, 3] is gener-
ated by no less than 3 elements, and is not
isomorphic to I(D). The minimal set of gen-
erators is given e.g. by the numbers 0, 2, 3.

• There are infinitely many isomorphism types
of dyadic intervals.

• The Io(D)-reduct of an affine D-space D may
not be an interval of D.

• The quasivariety of convex subsets of affine
D-spaces forms a proper subclass of the quasi-
variety of cancellative commutative binary modes
(barycentric algebras over D).

• The dyadic unit interval I(D) does not embed
into each Io(D)-subreduct of an affine D-space.
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CONVEX SETS OVER SUBRINGS OF R

Natural requirements for ”convex subsets“ of

affine R-spaces, where R ≤ R:

• R 6= Z (we need non-trivial unit interval),

• excluding non-faithful affine R-spaces (so that

”convex sets“ embed into affine spaces over R

but not over homomorphic images of R).

Suitable candidates:

principal ideal subdomains R of R.

Advantages:

• well developed theory of such R-modules (and

hence also affine R-spaces)

• nice characterizations of quasivarieties (Belkin)

(In particular faithful affine R-spaces form a

(minimal) quasivariety.)

10



R-CONVEX SETS

Definition Let R be a principal ideal subdo-

main of the ring R containing the ring Z of

integers but different from Z. Then a subset

C of an affine R-space (A, P, R) is called an R-

convex set if the affine space is faithful and

C is an Io(R)-subreduct of (A, P, R).

• The class of Io(R)-subreducts of faithful affine

R-spaces is a quasivariety, denoted as Cv(R).

• Two distinct points of an R-convex subset of

an affine R-space may belong to more than one

of its one-dimensional subspaces. (E.g. the

subalgebra of (D, Io(D)) generated by 0 and 3

is a D-convex set but it does not contain all

points of the D-line (D, D) lying between 0 and

3.)
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GEOMETRIC R-CONVEX SETS

Proposition The quasivariety Cv(R) is gener-

ated by the algebra (R, Io(R)), and hence, it is

minimal.

Definition For a 6= b in an affine R-space A,

let

`(a, b) = {abr | r ∈ R}.

For c, d ∈ `(a, b), with c ≤ d, the segment of

`(a, b) joining c and d is the set

[c, d]`(a,b) := {x ∈ `(a, b) | c ≤ x ≤ d}.

An R-convex subset C of a faithful affine R-

space A is geometric, if for all a, b ∈ A with

a 6= b and c, d ∈ C, if c, d ∈ `(a, b), then [c, d]`(a,b) ⊆
C.
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Proposition Let C be an R-convex subset of

the affine space Rk. Then the following con-

dition are equivalent.

• C is a geometric convex subset of Rk;

• C is the intersection of Rk and the convex

hull chR(C) of C in Rk, in fact

(C, Io(R)) = (chR(C), Io(R)) ∩ (Rk, Io(R));

• C is the intersection of Rk and some convex

subset of Rk.

Corollary The class of geometric R-convex sets

generates the quasivariety Cv(R) of R-convex

sets.
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BARYCENTRIC ALGEBRAS (B, I)

Let I = I(R) and Io = Io(R).

Convex sets as algebras (B, I):

(I) and (SC) hold, but (SA) is not defined for

p ◦ q = 0.

Define a new binary operation → on I:

p → q =

q/p if p > q;

1 otherwise.

Then for all p, q ∈ Io, q < q1p = p ◦ q and

q/(p ◦ q) = p ◦ q → q.

And for all p, q ∈ I, (SA) can be written as:

xyp zq = x (yzp ◦ q → q) p ◦ q (SA′)
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HOW TO AXIOMATIZE Io or I ?

Barycentric algebras were defined as algebras

(B, Io) or (B, I) satisfying certain identities.

However the intervals Io and I were not axiom-

atized in an abstract way. Hence the following

two questions.

1. How to axiomatize Io or I?

2. How to extend the definition of barycen-

tric algebras to include barycentric alge-

bras over algebras axiomatizing I?

Note that the operations of I needed in the

axiomatization of barycentric algebras are the

arithmetical operations +, ·,′ , / and linear or-

dering restricted to I.

15



LΠ-ALGEBRAS

LΠ-algebras were introduced by F. Montagna,
F. Esteva and L. Godo as an algebraization of
the so-called LΠ-logic. This logic results from
the combination of  Lukasiewicz and product
logics, two of the main fuzzy logics.

An LΠ-algebra is an algebra

(A,⊕,¬, ·π,→π, 0, 1),

where (A,⊕,¬, 0, 1) is an MV -algebra,
and (A, ·π,→π, 1), is a product algebra
(a commutative monoid with residuation),
satisfying certain additional identities.

Recall: MV -algebras are algebras of infinitely-
valued  Lukasiewicz logic and product algebras
are algebras of product logic.

Each LΠ-algebra has also a structure of a dis-
tributive lattice and satisfies

x ·π (x →π y) = x ∧ y.
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Typical examples are given by

• Boolean algebras, where

∨ = ⊕, ∧ = ·π, x → y = x →π y, ¬ =′,

• interval LΠ-algebras (I,⊕,¬, ·π,→π, 0, 1), where

¬x := 1 − x ;

x⊕ y := 1 ∧ (x + y) ;

x ·π y := x · y ;

x →π y := if x ≤ y then 1 else y/x .

LΠ-algebras form a variety, generated by the

interval LΠ-algebras and the Boolean algebra

2.
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ABSTRACT BARYCENTRIC ALGEBRAS

An abstract barycentric algebra is a two sorted
algebra (A, J, F t {t}) with two sorts A and J,
the set

F = {⊕,¬, ·π,→π, 0, 1}

of operations defined on J with values in J,
and one ternary operation

t : A×A× J → A; (x, y, p) 7→ xyp =: p(y, x)

such that:

(A) (J, F ) is an LΠ-algebra;

(B) the operation t satisfies the following iden-
tities for x, y ∈ A and p ∈ J:

0 (x, y) = y = 1(y, x) ;

p (x, x) = x ;

p (x, y) = ¬p (y, x) ;

p (x, q (y, z)) = p ◦ q ((p ◦ q →π q)(x, y), z) .

The derived operation ◦ is defined by p ◦ q :=
¬((¬p) ·π (¬q)).
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MAIN EXAMPLES

Each barycentric algebra (A, I) can be consid-

ered as abstract barycentric algebra (A, J = I),

where (I, F ) is an interval LΠ-algebra described

before.

Each abstract barycentric algebra (A, J) has a

subalgebra (A, 2), where 2 is a two element

Boolean algebra.

Proposition Each barycentric algebra (A, I) (a

homomorphic image of a convex set) has an

abstract counterpart (a homomorphic image

of the counterpart of this convex set.)

Much of the theory of barycentric algebras (A, I)

curry over to abstract barycentric algebras (A, I).
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FURTHER EXAMPLES

Proposition Binary operations of Boolean affine
spaces satisfy the identities (I), (SC) and (SA)
defining barycentric algebras.

Proposition The binary reducts (A, J = B) of
affine spaces over a Boolean ring B are ab-
stract barycentric algebras.

Subalgebras of such binary reducts form the
variety of so-called B-sets investigated by G.
Bergman and T. Stokes. They all can be
viewed as abstract barycentric algebras.

Certain B-sets extended by a semilattice oper-
ation form modes equivalent to if-then-else-
algebras of E. G. Manes.

Finally, rectangular modes (investigated by
R. Pöschel and M. Reichel) can be shown to
be equivalent to some B-sets, whence they also
can be viewed as abstract barycentric algebras.
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