EXOTIC BARYCENTRIC ALGEBRAS

A. B. ROMANOWSKA Faculty of Mathematics and Information Science, Warsaw University of Technology, 00-661 Warsaw, Poland

OUTLINE

- Real affine spaces
- Convex sets and barycentric algebras
- Modes
- *F*-barycentric algebras
- Dyadic convex sets
- Real versus dyadic
- \bullet Convex sets over subrings of ${\mathbb R}$
- *R*-convex sets
- Geometric *R*-convex sets
- Barycentric algebras (B, I)
- How to axiomatize I ?
- LП-algebras
- Abstract barycentric algebras
- Further examples

REAL AFFINE SPACES

Given a vector space (a module) A over a field (a subring R of) \mathbb{R} .

An affine space A over R (or affine R-space) is the algebra

$$\left(A,\sum_{i=1}^n x_i r_i \,\Big|\, \sum_{i=1}^n r_i = 1\right).$$

This algebra is equivalent to

 (A, P, \underline{R}) , (or to (A, \underline{R}) if 2 is invertible in R), where

$$\underline{R} = \{\underline{r} \mid r \in R\}, \text{ and } xyzP = x - y + z$$

and

$$xy\underline{r} = \underline{r}(x, y) = x(1 - r) + yr.$$

The class \underline{R} of all affine R-spaces is a variety.

Abstractly, \underline{R} is defined as the class of idempotent entropic Mal'cev algebras (A, P, \underline{R}) with a ternary Mal'cev operation P and binary operations \underline{r} for each $r \in R$, satisfying the identities:

$$xy\underline{0} = x = yx\underline{1},$$

$$xy\underline{p} \ xy\underline{q} \ \underline{r} = xy \ \underline{pqr},$$

$$xy\underline{p} \ xy\underline{q} \ xy\underline{r} \ P = xy \ \underline{pqr}P.$$

for all $p, q, r \in R$.

The variety $\underline{\underline{R}}$ satisfies also the **entropic** identities

$$xy\underline{p} \ zt\underline{p} \ q = xz\underline{q} \ yt\underline{q} \ \underline{p}$$

for all $p, q \in R$ and the **cancellation laws**

$$(xy\underline{p} = xz\underline{p}) \to y = z$$

for all $p \in R$ with $p \neq 0$.

CONVEX SETS and BARYCENTRIC ALGEBRAS

Let F be a subfield of \mathbb{R} , $I^o(F) :=]0, 1[= (0, 1) \subset F$ and $I(F) := [0, 1] \subset F$.

Convex subsets of affine *F*-spaces are $I^{o}(F)$ -subreducts $(A, \underline{I}^{o}(F))$ of *F*-spaces.

The class Cv(F) of convex sets generates the variety $\mathcal{B}(F)$ of *F*-barycentric algebras axiomatized by the following:

idempotence: $xx\underline{p} = x$ (I),

skew-commutativity: $xy\underline{p} = xy\underline{1-p} =: xy\underline{p}'$ (SC),

skew-associativity: $xy\underline{p} z \underline{q} = x yz\underline{q}/(p \circ q) \underline{p} \circ q$ (SA) for all $p, q \in I^o$. Note that $p \circ q = (p'q')' = p + q - pq$.

MODES

An algebra (A, Ω) is a **mode** if it is

• idempotent:

 $x...x\omega = x,$

for each *n*-ary $\omega \in \Omega$, and

• entropic:

 $(x_{11}...x_{1n}\omega)...(x_{m1}...x_{mn}\omega)\varphi$ $= (x_{11}...x_{m1}\varphi)...(x_{1n}...x_{mn}\varphi)\omega.$ for all $\omega, \varphi \in \Omega$.

Affine R-spaces and their subreducts (subalgebras of reducts) are modes. In particular, F-barycentric algebras are modes.

F-BARYCENTRIC ALGEBRAS

Theorem The class Cv(F) and the quasivariety C(F) of cancellative *F*-barycentric algebras coincide.

Proposition The following conditions are equivalent for any non-trivial subalgebra $(A, \underline{I}^o(F))$ of $(F, \underline{I}^o(F))$:

- (a) $(A, \underline{I}^{o}(F))$ is a line segment of $(F, \underline{I}^{o}(F))$;
- (b) $(A, \underline{I}^{o}(F))$ is isomorphic to $(I(F), \underline{I}^{o}(F))$;
- (c) $(A, \underline{I}^o(F))$ is generated by two (different) elements;
- (d) $(A, \underline{I}^o(F))$ is a free algebra on two free generators in the quasivariety $\mathcal{C}(F)$ and in the variety $\mathcal{B}(F)$.

NOTE: The algebra $(I(F), \underline{I}^o(F))$ embeds into each non-trivial *F*-convex set.

Proposition The quasivariety C(F) = Cv(F)of *F*-convex sets is a minimal subquasivariety of the variety $\mathcal{B}(F)$.

In particular, C(F) is generated by any one of $(F, \underline{I}^o(F))$ and $(I(F), \underline{I}^o(F))$.

Proposition Let R be a (unital) subring of \mathbb{R} . Then the free algebra over X in the quasivariety of subreducts of a given type τ of affine R-spaces is isomorphic to the τ -subreduct, generated by X, of the free affine R-space over X.

The set of elements of the free $\underline{I}^o(R)$ -algebra over $X = \{x_0, \ldots, x_n\}$ coincides with the *n*dimensional **simplex** $S_n(R)$ over R:

$$\{x_0a_0 + \dots + x_na_n \mid a_i \in I(R), \sum_{i=1}^n a_i = 1\}.$$

DYADIC CONVEX SETS

Consider the ring

 $\mathbb{D} = \mathbb{Z}[1/2] = \{m2^{-n} \mid m, n \in \mathbb{Z}\}$

of dyadic rational numbers.

A dyadic convex set is the intersection of a real convex set with the space \mathbb{D}^k .

• Dyadic convex sets are subreducts $(A, \underline{I}^o(\mathbb{D}))$ of affine \mathbb{D} -spaces.

Proposition Each dyadic convex set $(A, \underline{I}^o(\mathbb{D}))$ is equivalent to $(A, \cdot) = (A, \frac{1}{2}(x+y))$.

The operation \cdot is:

idempotent: $x \cdot x = x$, commutative: $x \cdot y = y \cdot x$, entropic (medial): $(x \cdot y) \cdot (z \cdot t) = (x \cdot z) \cdot (y \cdot t)$.

Hence the dyadic convex sets are **commutative binary modes** (or CB-modes).

REAL VERSUS DYADIC

• Not each dyadic interval is isomorphic to the interval $I(\mathbb{D})$, and not each is generated by its endpoints.

Example The dyadic interval [0,3] is generated by no less than 3 elements, and is not isomorphic to $I(\mathbb{D})$. The minimal set of generators is given e.g. by the numbers 0, 2, 3.

• There are infinitely many isomorphism types of dyadic intervals.

• The $\underline{I}^{o}(\mathbb{D})$ -reduct of an affine \mathbb{D} -space \mathbb{D} may not be an interval of \mathbb{D} .

• The quasivariety of convex subsets of affine \mathbb{D} -spaces forms a proper subclass of the quasivariety of cancellative commutative binary modes (barycentric algebras over \mathbb{D}).

• The dyadic unit interval $I(\mathbb{D})$ does not embed into each $\underline{I}^o(\mathbb{D})$ -subreduct of an affine \mathbb{D} -space.

CONVEX SETS OVER SUBRINGS OF ${\mathbb R}$

Natural requirements for "convex subsets" of affine *R*-spaces, where $R \leq \mathbb{R}$:

• $R \neq \mathbb{Z}$ (we need non-trivial unit interval),

• excluding non-faithful affine R-spaces (so that "convex sets" embed into affine spaces over Rbut not over homomorphic images of R).

Suitable candidates:

principal ideal subdomains R of \mathbb{R} .

Advantages:

• well developed theory of such *R*-modules (and hence also affine *R*-spaces)

nice characterizations of quasivarieties (Belkin)
 (In particular faithful affine *R*-spaces form a (minimal) quasivariety.)

R-CONVEX SETS

Definition Let R be a principal ideal subdomain of the ring \mathbb{R} containing the ring \mathbb{Z} of integers but different from \mathbb{Z} . Then a subset C of an affine R-space (A, P, \underline{R}) is called an R-**convex set** if the affine space is faithful and C is an $\underline{I}^o(R)$ -subreduct of (A, P, \underline{R}) .

• The class of $\underline{I}^{o}(R)$ -subreducts of faithful affine R-spaces is a quasivariety, denoted as $\mathcal{C}v(R)$.

• Two distinct points of an *R*-convex subset of an affine *R*-space may belong to more than one of its one-dimensional subspaces. (E.g. the subalgebra of $(\mathbb{D}, \underline{I}^o(\mathbb{D}))$ generated by 0 and 3 is a \mathbb{D} -convex set but it does not contain all points of the \mathbb{D} -line $(\mathbb{D}, \underline{\mathbb{D}})$ lying between 0 and 3.)

GEOMETRIC *R*-CONVEX SETS

Proposition The quasivariety Cv(R) is generated by the algebra $(R, \underline{I}^o(R))$, and hence, it is minimal.

Definition For $a \neq b$ in an affine *R*-space *A*, let

 $\ell(a,b) = \{ab\underline{r} \mid r \in R\}.$ For $c, d \in \ell(a,b)$, with $c \leq d$, the **segment** of $\ell(a,b)$ joining c and d is the set

$$[c,d]_{\ell(a,b)} := \{ x \in \ell(a,b) \mid c \le x \le d \}.$$

An *R*-convex subset *C* of a faithful affine *R*-space *A* is **geometric**, if for all $a, b \in A$ with $a \neq b$ and $c, d \in C$, if $c, d \in \ell(a, b)$, then $[c, d]_{\ell(a, b)} \subseteq C$.

Proposition Let C be an R-convex subset of the affine space R^k . Then the following condition are equivalent.

- C is a geometric convex subset of R^k ;
- C is the intersection of R^k and the convex hull $ch_{\mathbb{R}}(C)$ of C in \mathbb{R}^k , in fact

 $(C, \underline{I}^{o}(R)) = (ch_{\mathbb{R}}(C), \underline{I}^{o}(R)) \cap (R^{k}, \underline{I}^{o}(R));$

• C is the intersection of R^k and some convex subset of \mathbb{R}^k .

Corollary The class of geometric R-convex sets generates the quasivariety Cv(R) of R-convex sets.

BARYCENTRIC ALGEBRAS (B, I)

Let $I = I(\mathbb{R})$ and $I^o = I^o(\mathbb{R})$. Convex sets as algebras (B, \underline{I}) : (I) and (SC) hold, but (SA) is not defined for $p \circ q = 0$.

Define a new binary operation \rightarrow on I:

$$p \rightarrow q = \begin{cases} q/p & \text{if } p > q; \\ 1 & \text{otherwise.} \end{cases}$$

Then for all $p, q \in I^o$, $q < q1p = p \circ q$ and

$$q/(p \circ q) = p \circ q \to q.$$

And for all $p, q \in I$, (SA) can be written as:

$$xy\underline{p}\,z\underline{q} = x\,(yz\underline{p}\circ q \to q)\,\underline{p}\circ q \qquad (\mathsf{SA}')$$

HOW TO AXIOMATIZE I^o or I?

Barycentric algebras were defined as algebras (B, \underline{I}^o) or (B, \underline{I}) satisfying certain identities. However the intervals I^o and I were not axiomatized in an abstract way. Hence the following two questions.

1. How to axiomatize *I*^o or *I*?

2. How to extend the definition of barycentric algebras to include barycentric algebras over algebras axiomatizing *I*?

Note that the operations of I needed in the axiomatization of barycentric algebras are the arithmetical operations $+, \cdot, ', /$ and linear ordering restricted to I.

LN-ALGEBRAS

L Π -algebras were introduced by F. Montagna, F. Esteva and L. Godo as an algebraization of the so-called L Π -logic. This logic results from the combination of Łukasiewicz and product logics, two of the main fuzzy logics.

An LI-algebra is an algebra

 $(A, \oplus, \neg, \cdot_{\pi}, \rightarrow_{\pi}, 0, 1),$

where $(A, \oplus, \neg, 0, 1)$ is an *MV*-algebra, and $(A, \cdot_{\pi}, \rightarrow_{\pi}, 1)$, is a **product algebra** (a commutative monoid with residuation), satisfying certain additional identities.

Recall: MV-algebras are algebras of infinitelyvalued Łukasiewicz logic and product algebras are algebras of product logic.

Each L Π -algebra has also a structure of a distributive lattice and satisfies

$$x \cdot_{\pi} (x \to_{\pi} y) = x \wedge y.$$

Typical examples are given by

- Boolean algebras, where $\lor = \oplus, \land = \cdot_{\pi}, x \to y = x \to_{\pi} y, \neg =',$
- interval LII-algebras $(I, \oplus, \neg, \cdot_{\pi}, \rightarrow_{\pi}, 0, 1)$, where

$$\neg x := 1 - x;$$

$$x \oplus y := 1 \land (x + y);$$

$$x \cdot_{\pi} y := x \cdot y;$$

$$x \rightarrow_{\pi} y := \text{if } x \leq y \text{ then 1 else } y/x.$$

L Π -algebras form a variety, generated by the interval L Π -algebras and the Boolean algebra 2.

ABSTRACT BARYCENTRIC ALGEBRAS

An **abstract barycentric algebra** is a two sorted algebra $(A, J, F \sqcup \{t\})$ with two sorts A and J, the set

 $F = \{\oplus, \neg, \cdot_{\pi}, \rightarrow_{\pi}, 0, 1\}$

of operations defined on J with values in J, and one ternary operation

 $t : A \times A \times J \rightarrow A$; $(x, y, p) \mapsto xy\underline{p} = : \underline{p}(y, x)$ such that:

(A) (J, F) is an L Π -algebra;

(B) the operation t satisfies the following identities for $x, y \in A$ and $p \in J$:

$$\underline{0}(x,y) = y = \underline{1}(y,x);$$

$$\underline{p}(x,x) = x;$$

$$\underline{p}(x,y) = \underline{\neg p}(y,x);$$

$$\underline{p}(x,\underline{q}(y,z)) = \underline{p \circ q}(\underline{(p \circ q \to_{\pi} q)}(x,y),z).$$

The derived operation \circ is defined by $p \circ q := \neg((\neg p) \cdot_{\pi} (\neg q)).$

MAIN EXAMPLES

Each barycentric algebra (A, \underline{I}) can be considered as abstract barycentric algebra (A, J = I), where (I, F) is an interval L Π -algebra described before.

Each abstract barycentric algebra (A, J) has a subalgebra (A, 2), where 2 is a two element Boolean algebra.

Proposition Each barycentric algebra (A, \underline{I}) (a homomorphic image of a convex set) has an abstract counterpart (a homomorphic image of the counterpart of this convex set.)

Much of the theory of barycentric algebras (A, \underline{I}) curry over to abstract barycentric algebras (A, I).

FURTHER EXAMPLES

Proposition Binary operations of Boolean affine spaces satisfy the identities (I), (SC) and (SA) defining barycentric algebras.

Proposition The binary reducts (A, J = B) of affine spaces over a Boolean ring B are abstract barycentric algebras.

Subalgebras of such binary reducts form the variety of so-called B-sets investigated by G. Bergman and T. Stokes. They all can be viewed as abstract barycentric algebras.

Certain *B*-sets extended by a semilattice operation form modes equivalent to **if-then-elsealgebras** of E. G. Manes.

Finally, **rectangular modes** (investigated by R. Pöschel and M. Reichel) can be shown to be equivalent to some *B*-sets, whence they also can be viewed as abstract barycentric algebras.

REFERENCES

D. V. Belkin, *Constructing Lattices of Quasi-varieties of Modules*, (in Russian), Ph.D. Thesis, Novosibirsk State University, Novosibirsk, Russia, 1995.

G. M. Bergman, *Actions of Boolean rings on sets*, Algebra Universalis **28** (1991), 153–187.

G. M. Bergman, On lattices of convex sets in \mathbb{R}^n , Algebra Universalis **53** (2005), 357–395.

G. Birkhoff and J. D. Lipson, *Heterogeneous algebras*, J. Comb. Th. **8** (1970), 115–133.

R. L. O. Cignoli, I. M. L. D'Ottaviano and D. Mundici, *Algebraic Foundation of Many-valued Reasoning*, Kluwer, Dordrecht, 2000.

B. Csákány, *Varieties of affine modules*, Acta Sci Math. **37** (1975), 3–10.

G. Czèdli and A. Romanowska, *Some modes* with new algebraic closures, submitted.

G. Czèdli and A. Romanowska, *Convexity and closure condition*, preprint 2011.

F. Esteva, L. Godo and F. Montagna, *The* $L\Pi$ and $L\Pi 1/2$ logics: two complete fuzzy systems joining Łukasiewicz and product logics, Arch. Math. Logic **40** (2001), 39–67.

S. P. Gudder, *Convex structures and operational quantum mechanics*, Comm. Math. Phys. **29** (1973), 249–264.

P. Hájek, *Metamathematics of Fuzzy Logic*, Kluver, Dordrecht, 1998.

P. J. Higgins, *Algebras with a scheme of operators*, Math. Nachr. **27** (1963), 115–132. V. V. Ignatov, *Quasivarieties of convexors*, (in Russian), Izv. Vyssh. Uchebn. Zaved. Mat. **29** (1985), 12–14.

J. Ježek and T. Kepka, *Medial Groupoids*, Academia, Praha, 1983.

A. I. Mal'cev, *Algebraic Systems*, Springer-Verlag, Berlin, 1973.

E. G. Manes, *Adas and the equational theory of if-then-else*, Algebra Universalis **30** (1993), 373–394.

K. Matczak and A. Romanowska, *Quasivarieties of cancellative commutative binary modes*, Studia Logica **78** (2004), 321–335.

K. Matczak, A. B. Romanowska and J. D. H. Smith, *Dyadic polygones,* International Journal

of Algebra and Computation **21** (2011), 387–408. DOI:10.1142/80218196711006248

J. A. McCarthy, *A basis for a mathematical theory of computation,* in (P. Braffort and D. Hirschberg, eds.), Computer Programming and Formal Systems, Northe-Holland, 1993, 33–70.

F. Montagna, An algebraic approach to propositional fuzzy logic, Journal of Logic, Language and Information 9 (2000), 91-124.

F. Montagna, *Subreducts of MV-algebras with product and product residuation*, Algebra Universalis **53** (2005), 109–137.

W.D. Neumann, *On the quasivariety of convex subsets of affine spaces,* Arch. Math. **21** (1970), 11–16.

F. Ostermann and J. Schmidt, *Der baryzentrische Kalkül als axiomatische Grundlage der affinen Geometrie*, J. Reine Angew. Math. **224** (1966), 44–57.

K. Pszczoła, A. Romanowska and J. D. H. Smith, *Duality for some free modes,* Discuss. Math. General Algebra and Appl. **23** (2003), 45–62.

R. Pöschel, M. Reichel, *Projection algebras and rectangular algebras*, in *General Algebra and Applications* (eds. K. Denecke and H.-J. Vogel), Heldermann Verlag, Berlin, 1993, 180– 194.

A.B. Romanowska and J.D.H. Smith, *Modal Theory*, Heldermann, Berlin, 1985.

A.B. Romanowska and J.D.H. Smith, *On the structure of barycentric algebras,* Houston J.Math. **16** (1990), 431–448.

A.B. Romanowska and J.D.H. Smith, *On the structure of semilattice sums,* Czechoslovak Math. J. **41** (1991), 24–43.

A. B. Romanowska and J. D. H. Smith, *Embedding sums of cancellative modes into functorial sums of affine spaces*, in *Unsolved Problems on Mathematics for the 21st Century, a Tribute to Kiyoshi Iseki's 80th Birthday* (J. M. Abe and S. Tanaka, eds.), IOS Press, Amsterdam, 2001, pp. 127–139.

A.B. Romanowska and J.D.H. Smith, *Modes*, World Scientific, Singapore, 2002.

L.A. Skornyakov, *Stochastic algebras*, Izv. Vyssh. Uchebn. Zaved. Mat. **29** (1985), 3–11.

T.Stokes, *Sets with B-action and linear algebra*, Algebra Universalis **39** (1998), 31–43.

T. Stokes, *Radical classes of algebras with B-action*, Algebra Universalis **40** (1998), 73–85.