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This talk is about a counting function: the

profile.

I will present some old and some new results

and some conjectures.

I will divide this talk into three parts:

PAST

PRESENT

and

FUTURE



THE PAST

Definitions

A relational structure is a realization of a lan-
guage whose non-logical symbols are predicates.

This is a pair R := (E, (ρi)i∈I) made of a set
E and of a family of mi-ary relations ρi on E.
The set E is the domain or base of R. The
family µ := (mi)i∈I is the signature of R.

The profile of R is the function ϕR which counts
for every integer n the number ϕR(n) of sub-
structures of R induced on the n-element sub-
sets, isomorphic substructures being identified.

Clearly, this function only depends upon the
set A(R) of finite induced substructures of R
considered up to an isomorphism, a set intro-
duced by Roland Fräıssé under the name of
age of R .



If the signature µ is finite (in the sense that I is

finite), there are only finitely many relational

structures with signature µ on an n-element

domain, hence ϕR(n) is necessarily an integer

for each integer n.

In order to capture examples coming from al-

gebra and group theory, we cannot preclude I

to be infinite. But then, ϕR(n) could be an in-

finite cardinal. I will exclude this case. I make

the assumption that ϕR is integer valued, no

matter how large I is. With this assumption,

profiles of relational structures with bounded

signature are profiles of relational structures

with finite signature, structures that R. Fräıssé

call multirelations.



Several counting functions are profiles. Here is

some simple minded examples.

1. The binomial coefficient
(
n+k
k

)
. Let R :=

(Q,≤, u1, . . . , uk) where ≤ is the natural or-

der on the set Q of rational numbers, u1, . . . , uk
are k unary relations which divide Q into

k + 1 intervals. Then ϕR(n) =
(
n+k
k

)
.

2. The exponential n ↪→ kn. Let R := (Q,≤
, u1, . . . , uk), where again u1, . . . , uk are k

unary relations, but which divide Q into k

“colors” in such a way that between two

rational numbers all colors appear. Then

ϕR(n) = kn.

3. The factorial n ↪→ n!. Let R := (Q,≤,≤′),

where ≤′ is an other linear order on Q such

a way that the finite restrictions induce all



possible pairs of two linear orders on a finite

set (eg take for ≤′ an order with the same

type as the natural order on the set N of

non-negative integers). Then ϕR(n) = n!

4. The partition function which counts the

number (n) of partitions of the integer n.

Let R := (N, ρ) be the infinite path on the

integers whose edges are pairs {x, y} such

that y = x + 1. Then ϕR(n) = p(n). The

determination of its asymptotic growth is

a famous achievement, the difficulties en-

countered to prove that p(n) ' 1
4
√

3n
e
π
√

2n
3

(Hardy and Ramanujan, 1918) suggest some

difficulties in the general study of profiles.

Orbital profiles An important class of func-

tions comes from permutation groups. The

orbital profile of a permutation group G acting



on a set E is the function θG which counts for

each integer n the number, possibly infinite, of

orbits of the n-element subsets of E. As it is

easy to see, θG is the profile of some relational

structure R := (E, (ρi)i∈I) on E. In fact, as it

is easy to see:

Lemma 1. For every permutation group G act-

ing on a set E there is a relational structure R

on E such that:

1. Every isomorphism f from a finite restric-

tion of R onto an other extends to an au-

tomorphism of R.

2. Aut(R) = G where G is the topological

adherence of G into the symmetric group

G(E), equipped with the topology induced

by the product topology on EE, E being

equipped with the discrete topology.



Structures satisfying condition 1) are called

homogeneous (or ultrahomogeneous). They

are now considered as one of the basic objects

of model theory. Ages of such structures are

called Fräıssé classes after their characteriza-

tion by R.Fräıssé in 1954. In many cases, I

is infinite, even if θG(n) is finite. Groups for

which θG(n) is always finite are said oligomor-

phic by P.J.Cameron. The study of their profile

is whole subject by itself. Their relevance to

model theory steems from the following result

of Ryll-Nardzewski.

Theorem 2. Let G acting on a denumerable

set E and R be a relational structure such that

AutR = G. Then G is oligomorphic if and only

if the complete theory of R is ℵ0-categorical.



A Sample of Results

The profile grows

Theorem 3. If R is a relational structure on

an infinite set then ϕR is non-decreasing.

This result was conjectured by R.Fräıssé and

I. I proved it in 1971; the proof - for a single

relation- appeared in 1971 in R.Fräıssé’s course

in logic, Exercise 8 p. 113. The proof relies on

Ramsey theorem. In 1976, I gave a proof using

linear algebra (a straigthforward application of

a nice result on incidence matrices discovered

independently by Gottlieb (1966) and Kantor

(1972)).

There are jumps in the Growth of the Pro-

file Beyond bounded profiles, and provided that

the relational structures satisfy some mild con-

ditions, there are jumps in the behavior of the

profiles: eg. no profile grows as log n or nlog n.



Let ϕ : N → N and ψ : N → N. Recall that ϕ =

O(ψ) and ψ grows as fast as ϕ if ϕ(n) ≤ aψ(n)

for some positive real number a and n large

enough. We say that ϕ and ψ have the same

growth if ϕ grows as fast as ψ and ψ grows as

fast as ϕ. The growth of ϕ is polynomial of

degree k if ϕ has the same growth as n ↪→ nk;

in other words there are positive real numbers

a and b such that ank ≤ ϕ ≤ bnk for n large

enough. Note that the growth of ϕ is as fast as

every polynomial if and only if limn→+∞
ϕ(n)
nk

=

+∞ for every non negative integer k.

Theorem 4. Let R := (E, (ρi)i∈I) be a rela-

tional structure. The growth of ϕR is either

polynomial or as fast as every polynomial pro-

vided that either the signature µ := (ni)i∈I is

bounded or the kernel K(R) of R is finite.

The kernel of R is the set K(R) of x ∈ E such

that A(R�E\{x}) 6= A(R). Relational struc-

tures with empty kernel are those for which



their age has the disjoint embedding property,
meaning that two arbitrary members of the age
can be embedded into a third in such a way
that their domains are disjoint. In Fräıssé’s
terminology, ages with the disjoint embedding
property are said inexhaustible and relational
structures whose age is inexhaustible are said
age-inexhaustible. We will say that relational
structures with finite kernel are almost age-
inexhaustible.

At this point, enough to know that the kernel
of any relational structure which encodes an
oligomorphic permutation group is finite (this
fact immediate: if R encodes a permutation
group G acting on a set E then K(R) is the set
union of the orbits of the 1-element subsets of
E which are finite. Since the number of these
orbits is at most θG(1), if G is oligomorphic
then K(R) is finite).
Corollary 1. The orbital profile of an oligomor-
phic group is either polynomial or faster than
every polynomial.



Some hypotheses on R are needed in Theorem

4, indeed

Theorem 5. For every non-decreasing and un-

bounded map ϕ : N → N, there is a relational

structure R such that ϕR is unbounded and

eventually bounded above by ϕ.

The hypothesis about the kernel is not ad hoc.

As it turns out, if the growth of the profile of a

relational structure with a bounded signature

is bounded by a polynomial then its kernel is

finite.

Theorems 4 and 5 were obtained in 1978. The-

orem 5 and a part of Theorem 4 appeared

in 1981, with a detailed proof showing that

the growth of unbounded profiles of relational

structures with bounded signature is at least

linear. The notion of kernel is in several pa-

pers.



Polynomial Growth

It is natural to ask:

Problem 1. If the profile of a relational struc-

ture R with finite kernel has polynomial growth,

is ϕR(n) ' cnk
′

for some positive real c and

some non-negative integer k′?

The problem was raised by P.J.Cameron for

the special case of orbital profiles. Up to now,

it is unsolved, even in this special case.

An example, pointed out by P.J.Cameron, sug-

gests that a stronger property holds.

Let G′ be the wreath product G′ := G o Sω
of a permutation group G acting on {1, . . . , k}
and of Sω, the symmetric group on ω. Look-

ing at G′ as a permutation group acting on

E′ := {1, . . . , k} × ω, then - as observed by

Cameron- θG′ is the Hilbert function hInv(G)



of the subalgebra Inv(G) of C[x1, . . . , xk] con-

sisting of polynomials in the k indeterminates

x1, . . . , xk which are invariant under the action

of G. The value of hInv(G)(n) is, by definition,

the dimension dim(Invn(G)) of the subspace

of homogeneous polynomials of degree n. As

it is well known, the Hilbert series of Inv(G),

H(Inv(G), x) :=
∞∑
n=0

hInv(G)(n)xn

is a rational fraction of the form

P (x)

(1− x) · · · (1− xk)
(1)

with P (0) = 1, P (1) > 0, and all coefficients

of P being non negative integers.

Let us associate to a relational structure R

whose profile takes only finite values its gener-

ating series

HϕR :=
∞∑
n=0

ϕR(n)xn



Problem 2. If R has a finite kernel and ϕR
is bounded above by some polynomial, is the

series HϕR a rational fraction of the form

P (x)

(1− x)(1− x2) · · · (1− xk)

with P ∈ Z[x]?

Under the hypothesis above we do not know if

HϕR is a rational fraction.

It is well known that if a generating function is

of the form P (x)
(1−x)(1−x2)···(1−xk)

then for n large

enough, an is a quasi-polynomial of degree k′,
with k′ ≤ k−1, that is a polynomial ak′(n)nk

′
+

· · ·+ a0(n) whose coefficients ak′(n), . . . , a0(n)

are periodic functions. Hence, a subproblem

is:

Problem 3. If R has a finite kernel and ϕR is

bounded above by some polynomial, is ϕR(n)

a quasi-polynomial for n large enough?



Remark 1. Since the profile is non-decreasing,

if ϕR(n) is a quasi-polynomial for n large enough

then ak′(n) is eventually constant. Hence the

profile has polynomial growth in the sense that

ϕR(n) ∼ cnk′ for some positive real c and k′ ∈ N.

Thus, in this case, Problem 1 has a positive

solution.

Partial answers to Problem 2. True for rela-

tional structures which have a finite monomor-

phic decomposition, Thiéry and I, (2005). In

the case of tournaments, these are finite lex-

icographic sums of acyclic tournaments (such

decompositions have been studied by Culus and

Jouve (2005) and by Boudabbous and I, (2010).

True for graphs (Balogh, Bollobas, Saks, Sos

(2009)).



Relationship with language theory

In the theory of languages, one of the basic

results is that the generating series of a regular

language is a rational fraction. This result is

not far away from our considerations. Indeed,

if A is a finite alphabet, with say k elements,

and A∗ is the set of words over A, then each

word can be viewed as a finite chain coloured

by k colors and A∗ can be viewed as the age

of the relational structure made of the chain

Q of rational numbers divided into k colors in

such a way that, between two distinct rational

numbers, all colors appear.

Problem 4. Does the members of the age of

a relational structure with polynomial growth

can be coded by words forming a regular lan-

guage?

Problem 5. Extend the properties of regular

languages to subsets of Ωµ.



PRESENT During the last ten years, they
have been many results on enumeration of classes
of concrete structures like ordered graphs, graphs,
tournaments and also on permutations in con-
nection with the famous Stanley-Wilf conjec-
ture, solved by Marcus and Tardös in 2004.

These results are about hereditary classes of
relational structures.

A class C of finite relational structures, all with
the same arity µ, is hereditary if for every R ∈
C, every S which is isomorphic to an induced
substructure of R belongs to C. Let us call
profile the function ϕC(n) which counts for
each integer n the number of non isomorphic
n-element structures which belong to C.

Essentially, the results asserts that there are
jumps in the growth rate of the profile of hered-
itary classes of ordered graphs, graphs, tour-
naments and permutations.



Why permutations fall in the category of rela-

tional structures?

Let Sn be the set of permutations σ on {1, . . . , n}
and S :=

⋃
nSn.

Let σ ∈ Sn, set Bσ := ({1, . . . , n}, (≤,≤σ)),

where ≤ is the natural order on {1, . . . , n} and

≤σ the order defined on {1, . . . , n} by x ≤σ y if

σ(x) ≤ σ(y). Viewed as a relational structure,

Bσ is what I will call a bichain (in fact, this

is a canonical representative of an isomorphic

type of bichain). Next, if σ, τS, set σ ≤ τ if Bσ
is embeddable into Bτ . This define an order-

ing between permutations and allows to define

hereditary classes of permutations.

There are many results on concrete classes

of structures, especially of permutations. For

an example, Balogh, Bollobás, Saks and Sós

(2009) prove that



Theorem 6. If C is a hereditary class of fi-

nite graphs, then either ϕC is polynomial in

the sense that ϕC(n) = cnk +O(nk−1) or ϕC is

bounded below by the partition function, that

is ϕC(n) ≥ p(n) for all n.

In the case of tournaments, ordered graphs

and permutations, they show that the jump

goes from polynomial growth to exponential

growth, generalizing a Kaiser-Klazar result on

permutations. There is a very nice survey pa-

per by Klazar (2008) (on Arxiv). In his survey,

Klazar ask for a link between the results on the

profile of relational structures and the profile

of hereditary classes.



The link Let P be a poset or even a quasi

ordered set. An initial segment of P is any

subset I such that x ∈ I and y ≤ x imply y ∈ I.

An ideal is any non-empty initial segment of

P which is up-directed (that is x, y ∈ J imply

x, y ≤ z for some z ∈ J).

The class of relational structures can be quasi-

ordered by embeddability: say that R is embed-

dable into R′ if R is isomorphic to an induced

substructures of R′. On the set Ωµ made of

finite structures of type µ and considered up

to isomorphy this induces an order. Hereditary

classes of finite relational structures of a given

type, say µ, are simply initial segment of this

poset. What about ideals?

The class A(R) of finite relational structures

(considered up to isomorphy) which can be

embedded into a given relational structure R,

the age of R, is an ideal.



Theorem 7. R. Fräıssé (1948). Every count-

able ideal is the age of a (countable) relational

structure.

Note that if the arity µ is finite, the count-

ability condition is superflous. If µ is infinite

there are counterexamples, in fact every ideal

of Ωµ, with µ := (mi)i∈I, is the age of a rela-

tional structure if and only if mi = 1 for all i

but finitely many, and for those, mi = 2 (ne-

cessity in Delhommé, Sauer, Sagi, and I, 2009,

sufficiency by Kabil and I, 1992).

How relate initial segments and ideals?

Theorem 8. Erdös-Tarski (1941). A poset

with no infinite antichain is a finite union of

ideals.

A poset is well-quasi-ordered (wqo) if it has

no infinite descending chain and no infinite an-

tichain.



There is no infinite descending chain in Ωµ,

thus a hereditary class C ⊆ Ωµ is wqo iff it has

no infinite antichain.

In a poset P with no infinite descending chain,

an initial segment I is determined by the min-

imal elements of P \ I. If P := Ωµ, I := C,

these minimal elements are the bounds of C,

that is the relational structures R which does

not belong to C but such that for element x

in the domain E of R, the induced relation on

E \ {x} belongs to C.

Lemma 9. Let C be a hereditary class of finite

structures. If C is not wqo then there is an age

A ⊆ C which is wqo and has infinitely many

bounds in C.

Illustration. Let C be a hereditary class. Ei-

ther there is an age A ⊆ C whose profile grows

faster than every polynomial -in which case ϕC
grows faster than every polynomial- OR NOT.



I claim that in this case C is wqo and ϕC is poly-

nomial. This is a straightforward consequence

of what I proved in 1978 namely:

Theorem 10. The profile of an age A is ei-

ther polynomial, in which case A is wqo, with

finitely many bounds or ϕC grows faster than

every polynomial.

From this it turns out that C is wqo. Since C is

a finite union of ages and each has polynomial

profile, ϕC has polynomial profile.

Furthermore, C has finitely many bounds.

In the case of polynomial of degree 0, this says

that if C has bounded profile then it is wqo with

finitely many bounds ( Fräıssé and I, 1971).

The finiteness of the number of bounds relies

on the work of Frasnay (1965). I addressed the

degree 1 in 1981, proving that if the profile is

unbounded it is a least linear.



For more about ages which are wqo, see So-

brani and I (2001) and for the study of chains

of ideals in posets, Zaguia and I (1985),Chakir

and I (2005, 2007).



FUTURE? I see two lines of research.

One consists to extends to relational structures

and particularly to binary relational structures,

the results obtained for ordered graphs, graphs

and permutations. This is the subject of a

forthcoming thesis by Djamila Oudrar.

An other is the algebraic approach designed by

Peter J. Cameron.

The Age Algebra of Cameron P. J. Cameron

associates to A(R), the age of a relational

structure R, its age algebra, a graded commu-

tative algebra K.A(R) over a field K of charac-

teristic zero. He shows that if ϕR takes only

finite values, then the dimension of K.A(R)n,

the homogeneous component of degree n of

K.A(R), is ϕR(n). Hence, in this case, the

generating series of the profile is simply the

Hilbert series of K.A(R).



P.J Cameron mentions several interesting ex-

amples of algebras which turn to be age alge-

bras. The most basic one is the shuffle alge-

bra on the set A∗ of words on a finite alphabet

A [0]. Indeed, as mentionned at the end of

Subsection 2.3, A∗ is the age of the relational

structure (Q, (Ua)a∈A) where the Ua’s are unary

relations forming a coloring of Q into distinct

colors, in such a way that between two distinct

rational numbers, all colors appear. And the

shuffle algebra is isomorphic to the age algebra

of (Q, (Ua)a∈A).

The Set Algebra

Let E be a set and let [E]<ω be the set of

finite subsets of E (including the empty set

∅). Let K be a field and K[E]<ω be the set of

maps f : [E]<ω → K. Endowed with the usual

addition and scalar multiplication of maps, this



set is a vector space over K. Let f, g ∈ K[E]<ω

and Q ∈ [E]<ω. Set

fg(Q) =
∑

P∈[Q]<ω
f(P )g(Q \ P ) (2)

. With this operation added, the above vec-

tor space becomes a K-algebra. This algebra

is commutative and it has a unit, denoted by

1. This is the map taking the value 1 on the

empty set and the value 0 everywhere else.

The set algebra is the subalgebra made of the

maps such that f(P ) = 0 for every P ∈ [E]<ω

with |P | large enough. This algebra is graded,

the homogeneous component of degree n be-

ing made of maps which take the value 0 on

every subset of size different from n.

Let ≡ be an equivalence relation on [E]<ω. A

map f : [E]<ω → K is ≡-invariant, or briefly,

invariant, if f is constant on each equivalence

class. Invariant maps form a subspace of the

vector space K[E]<ω.



if R is a relational structure with domain E,

set F ≡R F ′ for F, F ′ ∈ [E]<ω if the restrictions

R �F and R �F ′ are isomorphic. The resulting

equivalence on [E]<ω is such that the invariant

maps form a subalgebra . Let K.A(R) be the

intersection of the subalgebra of K[E]<ω made

of invariant maps with the set algebra. This is

a graded algebra, the age algebra of Cameron.

The name comes from the fact that this alge-

bra depends only upon the age of R.

If ϕR takes only integer values, K.A(R) identi-

fies with the set of (finite) linear combinations

of members of A(R). This explain the fact

that, in this case, ϕR(n) is the dimension of

the homogeneous component of degree n of

K.A(R). In a special case, we have

Theorem 11. [0] If R has a monomorphic de-

composition into finitely many blocks E1, . . . , Ek,

all infinite, then the age algebra K.A(R) is a



polynomial algebra, isomorphic to a subalge-

bra K[x1, . . . , xk]R of K[x1, . . . , xk], the algebra

of polynomials in the indeterminates x1, . . . , xk.

Behavior of the Profile

In the frame of its age algebra, Cameron gave

the following proof of the fact that the profile

does not decrease.

Let R be a relational structure on a set E,

let e :=
∑
P∈[E]1 P (that we could view as the

sum of isomorphic types of the one-element re-

strictions of R) and U be the subalgebra gen-

erated by e. Members of U are of the form

λmem + · · ·+ λ1e+ λ01 where 1 is the isomor-

phic type of the empty relational structure and

λm, . . . , λ0 are in K. Hence U is graded, with

Un, the homogeneous component of degree n,

equals to K.en.



Theorem 12. If R is infinite then for every

u ∈ K.A(R), eu = 0 if and only if u = 0

This innocent looking result implies that ϕR is

non decreasing. Indeed, the image of a basis

of K.A(R)n by multiplication by em is an inde-

pendent subset of K.A(R)n+m.

Finite generation

If a graded algebra A is finitely generated, then,

since A is a quotient of the polynomial ring

K[x1, . . . , xk], its Hilbert function is bounded

above by a polynomial. In fact, as it is well

known, its Hilbert series is a fraction of form
P (x)

(1−x)d
, thus of the form given in (1) of subsec-

tion . Moreover, one can choose a numerator

with non-negative coefficients whenever the al-

gebra is Cohen-Macaulay. Due to Problem 2,

one could be tempted to conjecture that these

sufficient conditions are necessary in the case



of age agebras. Indeed, from Theorem 12 one

deduces easily:

Theorem 13. The profile of R is bounded if

and only if K.A(R) is finitely generated as a

module over U . In particular, if one of these

equivalent conditions holds, then K.A(R) is finitely

generated

But this case is exceptional. Indeed, on one

hand there are tournaments whose profile has

arbitrarily large polynomial growth rate. On an

other hand, with N.Thiéry we proved:

Theorem 14. The age algebra of a tourna-

ment is finitely generated if and only if the

profile is bounded.

The Behavior of the Hilbert Function; a

Conjecture of Cameron

Cameron [0] made an important observation

about the behavior of the Hilbert fonction.



Theorem 15. Let A be a graded algebra over

an algebraically closed field of characteristic

zero. If A is an integral domain the values of

the Hilbert function hA satisfy the inequality

hA(n) + hA(m)− 1 ≤ hA(n+m) (3)

for all non-negative integers n and m.

In 1981, he made the conjecture that if R

codes a permutation groups with no finite or-

bits then the age algebra over C is an integral

domain. I solved it positively in a slightly more

general setting:

Theorem 16. Let R be a relational structure

with possibly infinitely many non isomorphic

types of n-element substructures. If the ker-

nel of R is empty, then K.A(R) is an integral

domain.

Since the kernel of a relational structure R en-

coding a permutation group G is the union of



its finite orbits, if G has no finite orbit, the

kernel of R is empty. Thus from this result,

K.A(R) is an integral domain, as conjectured

by Cameron.

At the core of the solution is this lemma:

Lemma 17. Let m,n be two non negative inte-

gers. There is an integer t such that for every

set E, every field K with characteristic zero,

every pair of maps f : [E]m → K, g : [E]n → K,

if fg(Q) :=
∑
P∈[Q]m f(P )g(Q \ P ) = 0 for ev-

ery Q ∈ [E]m+n but f and g are not identically

zero, then f and g are zero on [E \ S]m and

[E \ S]n where S is a finite subset of E with

size at most t

If the age is inexhaustible, then in order to

prove that there is no zero divisor, the only part

of the lemma we need to apply is the assertion

that S is finite.



The fact that S can be bounded independently

of f and g, and the value of the least up-

per bound τ(n,m), seem to be of indepen-

dent interest. The only exact value we know

is τ(1, n) = 2n, a fact which amounts to a

weighted version of a theorem of Gottlieb and

Kantor on incidence matrices. Our existence

proof of τ(m,n) yields astronomical upper bounds.

For example, it gives τ(2,2) ≤ 2(R2
k(4) + 2),

where k := 530 and R2
k(4) is the Ramsey num-

ber equals to the least integer p such that

for every colouring of the pairs of {1, . . . , p}
into k colors there are four integers whose all

pairs have the same colour. The only lower

bound we have is τ(2,2) ≥ 7 and more gener-

ally τ(m,n) ≥ (m + 1)(n + 1) − 2. We cannot

preclude a extremely simple upper bound for

τ(m,n), eg quadratic in n+m.

For example, our 1971 proof of Theorem 3

consisted to show that ϕR(n) ≤ ϕR(n + 1)



provided that E is large enough, the size of

E being bounded by some Ramsey number,

whereas, according to the result of Gottlieb

and Kantor, 2n+ 1 suffices [0].
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