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What is Machine Learning?

« Computer Algorithms that

Learn

— Think of it as Programming by Example
— Devise a strategy to complete a task

« Example Handwriting
— Given examples of written letters
— Optical character recognition
— U.S. Post Office
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Short Biology Review

Nucleus

Cytoplasm

Protein

Ribosome

Translation
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Central Dogma of Proteomics

Primary protein structure
is sequence of amino acids

Sequence i i

Secondary protein structure
local conformation

primarily stabilized by
hydrogen bonding

Structure

Tertiary protein structure
three dimensional conformation

Quaternary protein structure

Combination of multiple
polypeptide chains

Function
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Application: What function does a protein perform?

* Protein > Molecular machines
— Catalyze reactions
— Mechanical work
— Structural components

e Proteins that bind DNA

— Transcription Regulation
— Epigenetics (Encode behavior)
— DNA Utility: Repair
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Motivation: Protein Function Prediction

Yearly Growth of Total Structures
NUMBEr OF SUUCTUres CAn be Viewed by NOVering mouse over the bar
NNNNNN

« Large amount of sequence data

— Number of solved genomes
— Personal genomics (108 bases < $0.50)

« Large amount of structural data
— Protein databank: Exponential Growth
— Cryo-EM Databank: Protein complexes
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 Training data (Experimental Function)
— Filter binding assays
— Chromatin Immuno-precipitation
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Binary Classification

e Protein Function Annotation
— Does a protein bind DNA?
— Glven two sets of structures

1. Binds DNA Unseen Example
2. Not bind DNA

O Machine Learnin
training : 9| —— Prediction Rule
Algorithm
examples
 Learning J
— Minimize number of mistakes predicted Label
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Learning Process (Binary Classification)
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Large Margin Linear Classifier: Support Vector Machine

e Formulation:
A X2

oL 1 2
minimize E||W||

such that

y.(W'x. +b)>1

@ denotes +1
pd O O denotes -1

Xy

»
»
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Non-linear Support Vector Machines

¢:R* = R
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Representation

« Attribute: Numerical description of an object X T )_é
— Where j=1...m ] i

» Feature Vector : Fixed length set of attribute:
— Wherei=1...n

5P La_ar_jlg_th_ !Sgpal_Wi_dl_:_h _!_PEt;_«lI.Lenth_ | l_atal._\i\'i[_ith |Species |

<'S.1" 3.5 1.4 0.2 setosa -
- - -5 3.0 1.4 0.2 setosa
« Special Attributes s =
4.6 3.1 1.5 0.2 —— setosa
. H 5.0 3.6 1.4 0.2 setosa
— Class: Target or unknown attribute S 19 7 Na eioia
Z-\ E 3.4 setosa
B - et
4.4 2.9 1.4
A 4.9 3.1 1.5 ! 2053
5.4 3.7 1.5 0.2 sefnsa
4.8 3.4 1.6 0.2 sefosa
4.8 3.0 1.4 0.1 sefosa
. ’ . 4.3 3.0 1.1 0.1 serosa
l l 5.8 4.0 1.2 0.2 setosa
5.7 4.4 1.5 0.4 setosa
5.4 3.9 1.3 0.4 setosa
5.1 3.5 1.4 0.3 setosa
5.7 3.8 1.7 0.3 setosa
5.1 3.8 1.5 0.3 setosa 8
5.4 3.4 1.7 0.2 setnsa i
5.1 3.7 1.5 0.4 setosa p

http://data-sorcery.org/category/pca
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Outline

« (Can a positive patch solve the problem?
— Binary Classification
— Represent entire sequence or structure

 |s there a more generic representation?
— Binary Classification
— Represent by residue content

» Most generic representation
— Multiple-instance Learning a8l cornTiylausLogo
— Represent each residue
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Outline

« Can a positive patch solve the problem?
— Binary Classification
— Represent entire sequence or structure

 |s there a more generic representation?
— Binary Classification
— Represent by residue content

» Most generic representation
— Multiple-instance Learning ggy;;{;;*;7;;{-,{;5;;7[?;;87-
— Represent each residue
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Protein Representation
DNA Positive Patch

e Structure /

— Size of largest positive patch (1)
— Surface amino acid composition (20’

e Sequence
— Charge (1)
— Amino acid composition (20)

» Represent each protein with

— 42 numeric features
- -10,1,0,0,11,5...3

Protein

Robert Langlois August 9, 2011
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Composition

Alanine
Phenylalanine

Others
Glycine
Proline . >

\,

Isoleucine —

Valine —

|
Aspartic Acid—
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Performance of Positive Patch + 41 other features

« Support vector machines
— Outperforms sequence analysis techniques like Blast

« Boosted Trees
— Compares well compared to Support Vector Machines (SVM)
— 10-fold cross-validation

Accuracy Sensitivity Specificity AUC

SVM 83.0 68.5 88.0 835
Boosted Tree 88.2 64.4 96.3 89.8
AD Tree 85.1 66.7 91.3 85.3
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Related Work: Classification with simple features

« Structural motifs (Shanahan 2005)

« Structural motifs and HMM (Pellegrini-Calace 2005)
 Structure attributes and NN (Ahmad 2002, 2004)

« Low resolution homology and LR (Szilagyi 2006)

 Structure attributes and SVM (Bhardwaj, Langlois, 2005)
— Natures Highlights

 Structure attributes and AB,Tree,SVM (Langlois,2006)

Robert Langlois August 9, 2011



HOWARD HUGHES MEDICAL INSTITUTE CURRENT STATE OF AUTOMATED PARTICLE PICKING

What Rules are Used?

!
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» Unexpected Results
— Mostly sequence features o e
— Exclusionary rules
— Patch does not dominate
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« Caveats 7]
— Only an approximation < . ) ; )
—  Still performs fairly well ’/P : 595{?@ 0849 (M ?m{'(/m 10{5%@ 48%‘
358 55 1| -0.44. 0.206 ||-0.158 (| 0.505 || 0.1 16 ||-0.496 55
 Back to the drawing board Nl UUUI\/I

Langlois RMCa n, N. Bhardwaj and H. Lu. Learning to translate seque
stru tretof ctiol Id ntifying DNA binding a dmmbranebdgpte A I of
Biomedical En gnee ng. 35:1043-1052, 2007.
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Outline

« Can a positive patch solve the problem?
— Binary Classification
— Represent entire sequence or structure

 |s there a more generic representation?
— Binary Classification
— Represent by residue content

» Most generic representation
— Multiple-instance Learning ggy;;{;;*;7;;{-,{;5;;7[?;;87-
— Represent each residue
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Conditional Amino Acid Composition

« Composition of both

— Type
— Environment

« Composition of Proline given

— Helix environment
— Sheet environment

3 residue window

——— | 4010
LLLTGEFANWLIPMNEELCAAQAYMATY IV

e e e e P e S R e e

| | ]
Both Helical Sheet None
A A A A

— Neither
_ Both C C C C
D D D D
Robert E Langlois, Hui Lu (2010) Boosting the prediction and understanding of DNA- Y Y Y %

binding domains from sequence, 3149-3158. In Nucleic Acids Research 38 (10).

ne
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Performance of generic sequence features

 Performance with Boosted Trees

NAROS Blast ' 00.2
AdaBoost 05.9
Structure Bhardwaj (2005)

06 Blast 82.5 })
AdaBoost 93.9
Sequenc Szilagyi (2006) | 93.0
AB Elast 68.6
AdaBoost 90.0
Langlois (2006) 88.7

e Structure features should encode more about function

« However, less information with sequence - competitive

Robert E Langlois, Hui Lu (2010) Boosting the prediction and understanding of DNA-binding domains from sequence, 3149-3158. In Nucleic
Acids Research 38 (10).
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What rules do the machine learning algorithms use?

|M.'E'I.' VI k—f—w_m! |.j.urpqn | IIS_N Wiz} | L¥S_MHm

o “Lng A n-mj_ ey
@S @ @ @) 25 Co0)
AE:E _HYI2 ;|| |.i.|.rp:l|l1|- CGLE_YYin | ARG "r"l"|IF|| 'I"l"E_H'\'[!J SER H'\'I:H| LEIJ lsy (K] |ARE_ZH':'|I.'FI |

d)@ﬁé/ w)\g\@wfg@v( (@ (Jm{w ) @ﬁ@@

P/ li- ALA_YHII%)
e E 1|!'EL ) 5: ]
@ﬂf}l@@ s ) 0473 (uﬂ I‘Eumj {\u%{){l&.m}

|I|,.'E m'uu || IL.E_T\'[n: |

{mmjé@

L L F L F J ¥ L

| AlLA r-.'r-.:m; |r-:'|‘-.'|'IT} |

TR BIR LR [RLRE] (Lrs ] 03 EIpE 1 (Lot} [l I -2 b HWT ana raa MR il Bl E{ mriL L
WEVIH IWIEE SRTIA B ] THIE TR T IRZEI [0 G A e ] | S| C o L L A 1y e | ] [ 1 T [ ] (=13 ] [ [ [ I Eed ] IS IRl IR
Tding ilmis T Thmi Tk Thrs TEpT Admj by lewdl Adnj Iprii Zibry i (B Wni Iuas 1bp? iy, [T (15 La™h Zilmj ThbpT
1=Th Ipas (B3 Il Ivas 1T} 1571 [P} [ 1571 (Frad Tupiin Tkl Dhei lisk keail =] kg7 [ Fpb’ Thaw
IbpT Igh lgem Dk b K Ihii Thamd txre e I [ Ivas T N T
| ] Tkl e oom Igum bewid (11 Tk ([ e fum flepm dim
T [T L] lirai bupin [ ekl It byj= (F 7] ([ ik
lvm 1412 il Iudim ldum LILLY Ik [LL) Ik 12 1 ligrs
el fmy (T3] gk lgee Tulirn L2 [T (11 1] B felnk
ligm I Am k] b X e Frm [
(1% 11 Iekin o Iblim (51 fop I T Ikun
lere ik Ipw I=am lher Trkin Ipi
(1] Tl Bk I
1 Timi Tt 1pdi
114 :] L= 1k
L= ik
o
Tt

August 9, 2011




HHMI

HOWARD HUGHES MEDICAL INSTITUTE CURRENT STATE OF AUTOMATED PARTICLE PICKING

Genome-wide Results: 2000 Sequence < 25% Similarity

0.8 }
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False Positive Rate
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Outline

« Can a positive patch solve the problem?
— Binary Classification
— Represent entire sequence or structure

 |s there a more generic representation?
— Binary Classification
— Represent by residue content

» Most generic representation P S
. . . http://ce.sharif.ir/courses/87-
— Multiple-instance Learning 88/1/ce717/syllabus/Logo
— Represent each residue
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Multiple-instance Learning

« Examples grouped into bags
« Label on group (bag) not example

« Bag Is positive If at least one
example is positive

 Otherwise bag Is negative

« Only weak information about
positive instances!

(©1998 by Oded Maron

Robert Langlois August 9, 2011
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Intuitive Example

« [llustration
— Each letter is an example A
— Each line indicates a bag (or group)
— Blue: Examples in a positive bag
— Red: Examples in a negative bag

 Classify bags by finding
positive instances
— Close to other instances in the positive
bags
— Far from instances in negative bags

Vv

August 9, 2011
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Multiple Instance Learning Example

Belongs to Positive Bag: | A

Positive Instance: A

LA
7

Negative: +
http://ftp.cs.wisc.edu/math-prog/talks/cibmO05.ppt
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Problem Formulation: MIL _
Training set Testing set

Instance Labels

Bag Labels

August 9, 2011



Amino Acid Representation

Residue Identity (20)

« Secondary Structure (3)
 Structure Neighbors (20)

« PSSM for residue at position (20)
« Blosum for positions -3 ... 3 (140)

« Properties: Charge, Surface Area (2)

Robert Langlois August 9, 2011




Experimental Results

e Similar Structure based features
e Achieves over 98 AUR!

« Change In representation
effective in improving accuracy.

JMBO6& EBlast 82.5
AdaBoost 093.9
Szilagyi (20086) 93.0

Functional Site Discovery from Incomplete Training Data (2011)
Robert Langlois Marina Langlois, and Hui Lu. In preparation.

L Robert Langlois August 9, 2011
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Instance-level (Binding Residue) Results
Reciever Operating Characteristic: Residuc-DNA
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Functional Site Discovery from Incomplete Training Data (2011)
Robert Langlois Marina Langlois, and Hui Lu. In preparation.

False Positive Rate
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Open Problems

« How to incorporate prediction dependencies in MIL?
— A protein (bag) is DNA-binding if a set (not a single) residue binds DNA
— The prediction of one residues increases likelihood of one nearby!
— However, both classification and MIL assume 11D — assumption not valid

« Can we improve learning by knowing the label/function of

certain proteins?
— Multiple-instance Active Learning
— Expensive to label all proteins — possible to label a subset
— Learning algorithm to find the optimal subset

Robert Langlois August 9, 2011
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