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What is Machine Learning? 

• Computer Algorithms that 
Learn 

– Think of it as Programming by Example 

– Devise a strategy to complete a task 

• Example Handwriting 
– Given examples of written letters 

– Optical character recognition 

– U.S. Post Office  
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Short Biology Review 
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Central Dogma of Proteomics 

Sequence 

Structure 

Function 
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Application: What function does a protein perform? 

• Protein  Molecular machines 
– Catalyze reactions 

– Mechanical work 

– Structural components 

• Proteins that bind DNA 
– Transcription Regulation 

– Epigenetics (Encode behavior) 

– DNA Utility: Repair 
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Motivation: Protein Function Prediction 

• Large amount of sequence data 
– Number of solved genomes 

– Personal genomics (106 bases < $0.50) 

• Large amount of structural data 
– Protein databank: Exponential Growth 

– Cryo-EM Databank: Protein complexes 

• Training data (Experimental Function) 
– Filter binding assays 

– Chromatin Immuno-precipitation 
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Binary Classification 

• Protein Function Annotation 
– Does a protein bind DNA? 
– Given two sets of structures 

1. Binds DNA 

2. Not bind DNA  

 

 

 

• Learning 
– Minimize number of mistakes 

 

Unseen Example 

Predicted Label 

Machine Learning 

Algorithm 
Prediction Rule 

Labeled 

training 

examples 
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Learning Process (Binary Classification) 
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Large Margin Linear Classifier: Support Vector Machine 

• Formulation:  

denotes +1 
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Non-linear Support Vector Machines 
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Representation 

• Attribute: Numerical description of an object 
– Where j=1…m 

• Feature Vector : Fixed length set of attributes 
– Where i=1…n 

• Special Attributes 
– Class: Target or unknown attribute 

 

x j Î xi

yi

(xi, yi ) Î S

http://data-sorcery.org/category/pca 
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Outline 

• Can a positive patch solve the problem? 
– Binary Classification 

– Represent entire sequence or structure 

• Is there a more generic representation? 
– Binary Classification 

– Represent by residue content 

• Most generic representation 
– Multiple-instance Learning 

– Represent each residue 

http://ce.sharif.ir/courses/87-

88/1/ce717/syllabus/Logo 
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Protein Representation 

• Structure 
– Size of largest positive patch (1) 

– Surface amino acid composition (20) 

• Sequence 
– Charge (1) 

– Amino acid composition (20) 

• Represent each protein with 
– 42 numeric features 

– -10, 1, 0, 0, 11, 5 … 3 

Protein 

DNA Positive Patch 
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Composition 
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Performance of Positive Patch + 41 other features 

• Support vector machines 
– Outperforms sequence analysis techniques like Blast 

• Boosted Trees 
– Compares well compared to Support Vector Machines (SVM) 

– 10-fold cross-validation 
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Related Work: Classification with simple features 

• Structural motifs (Shanahan 2005) 

• Structural motifs and HMM (Pellegrini-Calace 2005) 

• Structure attributes and NN (Ahmad 2002, 2004) 

• Low resolution homology and LR (Szilagyi 2006) 

• Structure attributes and SVM (Bhardwaj, Langlois, 2005) 
– Natures Highlights 

• Structure attributes and AB,Tree,SVM (Langlois,2006) 
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What Rules are Used? 

• Unexpected Results 
– Mostly sequence features 

– Exclusionary rules 

– Patch does not dominate 

• Caveats 
– Only an approximation 

– Still performs fairly well 

• Back to the drawing board 
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Conditional Amino Acid Composition 
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• Composition of both 
– Type 

– Environment 

• Composition of Proline given 
– Helix environment 

– Sheet environment 

– Neither 

– Both 

3 residue window 

Robert E Langlois, Hui Lu (2010) Boosting the prediction and understanding of DNA-

binding domains from sequence, 3149-3158. In Nucleic Acids Research 38 (10). 
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Performance of generic sequence features 

• Performance with Boosted Trees 

 

 

 

 

• Structure features should encode more about function 

• However, less information with sequence - competitive 

Structure 

 

Sequence 

Robert E Langlois, Hui Lu (2010) Boosting the prediction and understanding of DNA-binding domains from sequence, 3149-3158. In Nucleic 

Acids Research 38 (10). 
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What rules do the machine learning algorithms use? 
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Genome-wide Results: 2000 Sequence < 25% Similarity 

AA Composition  

SS Conditional 

Full Conditional 
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Multiple-instance Learning 

• Examples grouped into bags 

• Label on group (bag) not example 

• Bag is positive if at least one 
example is positive 

• Otherwise bag is negative 

• Only weak information about 
positive instances! 
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Intuitive Example 

• Illustration 
– Each letter is an example 

– Each line indicates a bag (or group) 

– Blue: Examples in a positive bag 

– Red: Examples in  a negative bag 

• Classify bags by finding 
positive instances 

– Close to other instances in the positive 

bags 

– Far from instances in negative bags 

a 

a 

a 

d 

d 

d 

c 

c 

c 

f 

f 

f 

g 

g 

g 
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Multiple Instance Learning Example 

Belongs to Positive Bag: 

Negative: 

http://ftp.cs.wisc.edu/math-prog/talks/cibm05.ppt 

Positive Instance: 
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Problem Formulation: MIL 

Bag Labels 

Instance Labels 

Bag Labels 

? 

? 

Training set Testing set 

Prediction 
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Amino Acid Representation 

• Residue Identity (20) 

• Secondary Structure (3) 

• Structure Neighbors (20) 

• PSSM for residue at position (20) 

• Blosum for positions -3 … 3 (140) 

• Properties: Charge, Surface Area (2) 
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Experimental Results 

• Similar Structure based features 

• Achieves over 98 AUR! 

• Change in representation 
effective in improving accuracy. 

Functional Site Discovery from Incomplete Training Data (2011) 

Robert Langlois Marina Langlois, and Hui Lu. In preparation. 
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Instance-level (Binding Residue) Results 

Functional Site Discovery from Incomplete Training Data (2011) 

Robert Langlois Marina Langlois, and Hui Lu. In preparation. 
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Open Problems 

• How to incorporate prediction dependencies in MIL? 
– A protein (bag) is DNA-binding if a set (not a single) residue binds DNA 

– The prediction of one residues increases likelihood of one nearby! 

– However, both classification and MIL assume IID – assumption not valid 

 

• Can we improve learning by knowing the label/function of 
certain proteins? 

– Multiple-instance Active Learning 

– Expensive to label all proteins – possible to label a subset 

– Learning algorithm to find the optimal subset 
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