
Szymon Szczepański
Maciej Świechowski

Paweł Aszklar

Windows Forms

szymon.szczepanski@gmail.com
m.swiechowski@mini.pw.edu.pl
p.aszklar@mini.pw.edu.pl

mailto:szymon.szczepanski@gmail.com
mailto:m.swiechowski@mini.pw.edu.pl
mailto:p.aszklar@mini.pw.edu.pl


What is .NET Framework?

From 2002 to …

• .NET 1.1 – 2003

• .NET 2.0 – 2005

• .NET 3.0 – 2006

• .NET 3.5 – 2007

• .NET 4.0 – 2010

• .NET 4.5 – 2012

• .NET 4.6 – 2015

• .NET 4.7 – 2017

• .NET 4.8 – 2019 (last major release)

For more: 
https://en.wikipedia.org/wiki/.NET_Framework_version_history

https://en.wikipedia.org/wiki/.NET_Framework_version_history


.NET Core

• Is NOT the .NET Framework

• .NET Core 1.0 – 2016

• .NET Core 2.0 – 2017

• .NET Core 3.0 – 2019

• .NET 5.0 – (future of .NET, 2020)

• .NET 6.0 – planned for 2021 (LTS)

• .NET 7.0 – planned for 2022

• .NET 8.0 – planned for 2023

• Windows Forms and WPF ported to .NET Core 3.1



.NET Core vs .NET Framework

• Use .NET Core for your server application when:
• You have cross-platform needs.
• You are targeting microservices.
• You are using Docker containers.
• You need high-performance and scalable systems.
• You need side-by-side .NET versions per application.

• Use .NET Framework for your server application when:
• Your app currently uses .NET Framework (recommendation is to extend 

instead of migrating).
• Your app uses third-party .NET libraries or NuGet packages not available for 

.NET Core.
• Your app uses .NET technologies that aren't available for .NET Core.
• Your app uses a platform that doesn’t support .NET Core.



Microsoft technology stack



What is Windows Forms?

• Part of .NET Framework since version 1.0

• Created for Windows 

• For Linux? MONO!

Namespace

• System.Windows.Forms

• Abstraction over GUI part of Windows API exposing it 
to managed code

• Effectively a wrapper over part of Windows API

• Like .NET Framework it is managed but can have 
resource leaks



Categories of classes in Windows Forms

• Core infrastructure (e.g. Application, Forms)

• Controls – derived from Control class (e.g. Button, TextBox)

• Component – not derived from Control class (e.g. Timer, ToolTip)

• Common dialog boxes (e.g. OpenFileDialog, PrintDialog)

Some examples …



Windows Forms - Architecture

• Event-driven applications

• Wrapping the existing Windows API in 
managed code

• More comprehensive abstraction above the 
Win32 API than Visual Basic or MFC

• Inheritance
Legend

System.Windows.Forms

System.Object

System.MarshalByRefObject

System.ComponentModel.Component

CommonDialog

ColorDialog

FileDialog

FontDialog

PageSetupDialog

PrintDialog

ErrorProvider

HelpProvider

ImageList

NotifyIcon

Menu

ContextMenu

MainMenu

MenuItem

StatusBarPanel

Timer

ToolBarButton

ToolTip

Control

ButtonBase

Button

CheckBox

RadioButton

DataGrid

DateTimePicker

GroupBox

Label

LinkLabel

ListControl

ComboBox

ListBox

CheckedListBox

ListView

MonthCalendar

PictureBox

PrintPreviewControl

ProgressBar

ScrollableControl

ContainerControl

Form

PrintPreviewDialog

ThreadExceptionDialog

PropertyGrid

UpDownBase

DomainUpDown

NumericUpDown

UserControl

Panel

TabPage

ScrollBar

HScrollBar

VScrollBar

Splitter

StatusBar

TabControl

TextBoxBase

RichTextBox

TextBox

ToolBar

TrackBar

TreeView

TreeNode

ListViewItem

Concrete Class

Abstract Class



Events and Events Handling

• Events enable a class or an object to notify other classes or objects when something of 
interest occurs. The class that sends (or raises) an event is called the publisher and the 
classes that receive (or handle) the event are called the subscribers.

• Event-driven graphical user interface

• Event handlers - methods that process events and perform tasks

• Each control generating an event has an associated delegate that defines the signature for 
event handlers

• event delegates are multicast (they contain lists of methods’ references)

• once an event is raised, every method that the delegate references is called



Event-driven graphical user interface in Windows Forms

• In Windows Forms, event handler can be fired randomly

• In Windows Forms, events are by default synchronous

• Problems
• Memory leaks (weak reference and GC)

Criticism:

The design of those programs which rely on event-action model has been criticized, and it has been 
suggested that the event-action model leads programmers to create error-prone, difficult to extend 
and excessively complex application code. Table-driven state machines have been advocated as a 
viable alternative. On the other hand, table-driven state machines themselves suffer from significant 
weaknesses including "state explosion" phenomena.



Events example

public class MyForm : Form
{

public MyForm()
{

FormClosing += OnClosing;
}

private void OnClosing(Object sender, FormClosingEventArgs e)
{

if (MessageBox.Show("Sure to close?", "Question",
MessageBoxButtons.YesNo) == DialogResult.No)

{
e.Cancel = true;

}
}

}



Application & Forms – let’s start Windows 
Forms



Application (System.Windows.Forms)

• Class representing the entire Windows Forms application

MSDN :

The Application class has methods to start and stop applications and threads, and to 
process Windows messages, as follows:

• Run starts an application message loop on the current thread and, optionally, makes a 
form visible.

• Exit or ExitThread stops a message loop.

• DoEvents processes messages while your program is in a loop.

• AddMessageFilter adds a message filter to the application message pump to monitor 
Windows messages.

• IMessageFilter lets you stop an event from being raised or perform special operations 
before invoking an event handler.

This class has CurrentCulture and CurrentInputLanguage properties to get or set culture 
information for the current thread.

You cannot create an instance of this class.



Application 

Properties with information about:

• path to the executable file

• path to application data directories

• current culture

• etc.



Forms (System.Windows.Forms) – Window

• Class representing the main window, dialog box, or MDI child window

• Most members inherited from parent classes

• (most notably Control class)

• You will also need to add the STAThread attribute to the Main method in order 
for the form to run



Form’s Lifetime

Windows Forms application starts, the startup events of the main form are raised in the 
following order:

1. Constructor
2. Control.HandleCreated
3. Control.BindingContextChanged
4. Form.Load
5. Control.VisibleChanged
6. Form.Activated
7. Form.Shown

When an application closes, the shutdown events of the main form are raised in the 
following order:

1. Form.Closing
2. Form.FormClosing
3. Form.Closed
4. Form.FormClosed
5. Form.Deactivate
6. Dispose
7. Destructor



Size and Postion

• Visibility

• Show(), Visible

• Shown, VisibleChanged

• Properties:

• Region, Bounds, DesktopBounds, ClientRectangle

• Left, Top, Width, Height

• Right == Left + Width 

• Bottom == Top + Height

• StartPosition

• Location, DesktopLocation

• Size, ClientSize

• MinimumSize, MaximumSize

• AutoSize, AutoSizeMode

• WindowState, TopMost



Form’s Size and Position cont’d

• Methods:

• SetBounds(), SetDesktopBounds(),SetDesktopLocation()

• BringToFront(), SendToBack()

• SizeFromClientSize()

• Events:

• ClientSizeChanged, SizeChanged

• LocationChanged

• MaximumSizeChanged, MinimumSizeChanged

• Resize, ResizeBegin, ResizeEnd



Form’s Appearance

• Properties and methods for manipulating:

• colors of different elements of the form

• background images

• fonts

• icon, cursor icon

• system buttons (minimize box, maximize box, help)

• whether or not the form is visible on the taskbar

• opacity of the form

• and more…



Model and Modeless Forms

• A dialog (or dialogue) refers to a conversation between two people. In user 
interfaces, a dialog is a “conversation” between the system and the user, and 
often requests information or an action from the user.

• Definition: A modal dialog is a dialog that appears on top of the main content 
and moves the system into a special mode requiring user interaction. This dialog 
disables the main content until the user explicitly interacts with the modal 
dialog



Model and Modeless Forms

Modal

• Has to be closed before using the 
rest of the application

• ShowModal(), ShowDialog()

• AcceptButton, CancelButton, 
DialogResult

Modeless

• Allows to shift focus between 
different forms in the application

• Show()

• Close(), FormClosing, FormClosed



Guidelines for Using Modal Dialogs

• Use modal dialogs for important warnings, e.g. to prevent or correct critical errors.

• Would the problem be easier or harder to correct if users’ attention is taken away 
from the task?

• Is the error irreversible? 

• Use modal dialogs to request the user to enter information critical to continuing the 
current process

• Modal dialogs can be used to fragment a complex workflow into simpler steps.

• Use modal dialogs to ask for information that, when provided, could significantly 
lessen users’ work or effort.

• Do not use modal dialogs for nonessential information that is not related to the 
current user flow.

• Avoid modal dialogs that interrupt high-stake processes such as checkout flows.

• Avoid modal dialogs for complex decision making that requires additional sources of 
information unavailable in the modal.


