
Programming in Graphical Environment
Windows API Lecture 4

Paweł Aszklar
P.Aszklar@mini.pw.edu.pl

Faculty of Mathematics and Information Science
Warsaw Univeristy of Technology

Warsaw 2021

mailto:P.Aszklar@mini.pw.edu.pl

GDI Overview

Graphics Device Interface
Abstract interface for producing graphics and text on various media
Drawing on: displays, bitmaps, printers, …
Core system component from the earliest Windows versions
Integrates well with message‐driven GUI paradigm
Stateful

Prefers modifying state before drawing over drawing function parameters
Simpler function calls, but harder to reason about

Limited resource pools, difficult management make accidental leaks easier and more severe
Limitations:

Hardware acceleration
Only for bit‐block transfers
Far below Direct2D/DirectWrite capabilities
Still superior to GDI+ (which is entirely in software)

Anti‐aliasing only for text, bitmap stretching
Transparency: Alpha blending available only for selected operations

Paweł Aszklar (MiNI PW) PiGE Warsaw 2021 2 / 46

GDI Overview

Basic Types
COLORREF— RGB color

From lowest byte: blue, green, red channels
High byte unused (sometimes alpha channel)
RGB(r, g, b)— combine channel values
GetRValue(c), GetGValue(c), GetBValue(c)— extract

POINT— 2D integer coordinate

typedef DWORD COLORREF;
struct POINT {

LONG x, y;
};
struct RECT {

LONG left;
LONG top;
LONG right;
LONG bottom;

};
RECT—Upright (axis‐aligned) rectangle

Coordinates: X of left and right, and Y of top and bottom edge
BOOL SetRectEmpty(RECT *rc)— all coordinates set to 0
BOOL SetRect(RECT* rc, int left, int top, int right, int bottom)
BOOL IsRectEmpty(const RECT *rc)— if width and height are 0
BOOL InflateRect(RECT *rc, int dx, int dy)— increase width by 2dx and height by 2dy
(dx subtracted from left and added to right, dy subtracted from top and added to bottom coordinates)
BOOL OffsetRect(RECT *rc, int dx, int dy)—moves rectangle
(dx added to left and right, dy added to top and bottom coordinates)
BOOL CopyRect(RECT *dst, const RECT *src)— copies coordinates

Paweł Aszklar (MiNI PW) PiGE Warsaw 2021 3 / 46

GDI Overview

Basic Types
RECT—Upright (axis‐aligned) rectangle

BOOL EqualRect(const RECT *rc1, const RECT rc2)— checks if coordinates are equal
BOOL PtInRect(const RECT *rc, POINT pt)— checks if pt is inside rc
(left, top egde or interior only, rc height and width must not be negative)
Bounding box of set intersection of rectangle areas:
BOOL IntersectRect(RECT *dst, const RECT *src1, const RECT *src2)
Bounding box of set union of rectangle areas:
BOOL UnionRect(RECT *dst, const RECT src1, const RECT *src2)
Bounding box of set difference of rectangle areas:
BOOL SubtractRect(RECT *dst, const RECT src1, const RECT *src2)

Set Union: Set Difference:

Paweł Aszklar (MiNI PW) PiGE Warsaw 2021 4 / 46

GDI Device Context

Device Context

Core of GDI abstraction
HDC— handle to opaque device context object
Stores state, links drawing to particular surface
Provides way to query capabilities of a device
Device context types:

Display, printer — tied to a given device
Memory — allow drawing on bitmaps
Information context — context of a display, printer, which can retrieve device properties and
capabilities, but cannot draw.

Paweł Aszklar (MiNI PW) PiGE Warsaw 2021 5 / 46

GDI Device Context

Obtaining Display Context

Display context can be obtained for any window, primary display or entire virtual screen
Usually retrieved from common pool
Common contexts have state reset upon retrieval
Private context can be requested for window/class, usually controlled by class style:

CS_OWNDC— each window has own private context
CS_CLASSDC— all windows of a class share a private context (should be avoided!)

Obtained context can limit the area where drawing is visible, i.e. clipping region (depending
on window styles and function used) to visible part of:

Window’s client area
Windows area including frame
WS_CLIPCHILDREN— additionally excludes areas of child windows
WS_CLIPSIBLINGS— additionally excludes areas covered by siblings drawn on top

Child window can request to use parent’s context

Paweł Aszklar (MiNI PW) PiGE Warsaw 2021 6 / 46

GDI Device Context

Obtaining Display Context
window’s client area: HDC GetDC(HWND hWnd) (pass nullptr for entire screen)
window area (incl. frame): HDC GetWindowDC(HWND hWnd) (pass nullptr for primary display)
window’s (client) area: HDC GetDCEx(HWND hWnd, HRGN clip, DWORD flags)
(pass nullptr for entire screen), depending on flags:

DCX_INTERSECTRGN, DCX_EXCLUDERGN— drawing on visible area intersected with clip/with
clip excluded
DCX_CLIPCHILDREN, DCX_CLIPSIBLINGS— as if corresponding class style was set
DCX_PARENTCLIP— context of parent (parent’s CS_PARENTDC, WS_CLIPCHILDREN ignored)
DCX_CACHE— common context (regardless of class styles)
DCX_WINDOW— entire window’s visible area instead of just client

Releasing context:
Contexts acquired by above function released by ReleaseDC
Common contexts need to be freed as soon as possible
Private context don’t need to be released immediately (unless shared by whole class), but it’s
recommended for consistency (they can always be retrieved again unchanged)

Paweł Aszklar (MiNI PW) PiGE Warsaw 2021 7 / 46

GDI Device Context

Creating Device Context
Display (any display, entire screen), printer context:

CreateDCW— drawing context
CreateICW— information context (no drawing)

Memory context:
HDC CreateCompatibleDC(HDC hdc)

Context created with default attribute
Compatible with hdc’s device, but with default attributes
Bound to monochrome 1× 1 bitmap (needs to be rebound)

Destroying contexts
Functions above create context owned by calling thread
Must be destroyed by calling DestroyDC when no longer needed
Bitmap bound to memory context isn’t released with it!
(Although the default bitmap memory context is created with doesn’t need releasing)

Paweł Aszklar (MiNI PW) PiGE Warsaw 2021 8 / 46

GDI Device Context

Device Context State
Context stores various states, drawing modes and bound (selected) object used for all relevant
drawing operations:

Positioning:
Current position — where certain drawing operations start
Transformations — map logical points to screen (world→page→device→screen)

Selected objects (one of each)
Pen, Brush, Font
optional: Palette, Clip Region, Path
memory context: Bitmap

Modes:
graphics mode, layout, text alignment
drawing modes: polygon filling, arc direction
mixing modes: foreground, background, stretch

Other properties:
colors: background, text, DC Pen, DC Brush (DC Pen and Brush not selected by default)
text spacing, brush origin (for non‐solid brushes), miter limit (for line joints), …

Paweł Aszklar (MiNI PW) PiGE Warsaw 2021 9 / 46

GDI Bitmaps

Bitmaps
Image stored as continuous binary data
Additional information needed to interpret and display image data
How to extract a pixel values:

Image resolution: width w, height h
Bits per pixel count bpp (usually 24 or 32bpp)
(e.g. 4bpp – one byte describes two pixels; 24bpp— 3 bytes describe one pixel)

Optionally:
Scan‐line (row of pixels) byte width — not always w ∗ bpp because of alignment requirements
Compression type — image data might need to be decompressed before accessing pixels
Row order — bottom‐up (default) or top‐down

How to interpret pixel values (pixel format):
Indexed colors — values indicate an index in a color table
RGB colors — value is a bitfield of three channel intensities

How to reproduce the image (optional):
Intended physical dimensions
Color table (RGB values or indices in device’s current palette)
Color profile image was created with, preferred color profile matching technique

Paweł Aszklar (MiNI PW) PiGE Warsaw 2021 10 / 46

GDI Bitmaps

Device‐Dependent (Compatible) Bitmaps (DDB)
Bottom‐up, uncompressed
Only describes how to extract pixel values
Interpretation, reproduction depends on device context
HBITMAP CreateCompatibleBitmap(

HDC hdc, int cx, int cy)
Creates compatible bitmap of given resolution
Bpp, row alignment matches hdc’s surface
If cx or cy is 0, creates 1×1 monochrome bitmap (1bpp)
If hdc is a memory context and has a device‐independent
bitmap selected, device‐independent bitmap (with the
same attributes) is created instead.

struct BITMAP{
LONG bmType; //always 0
LONG bmWidth; //cx
LONG bmHeight; //cy
LONG bmWidthBytes;
WORD bmPlanes; //always 1
WORD bmBitsPixel; //bpp
LPVOID bmBits; //bits

};

HBITMAP CreateBitmap(int cx, iny cy, UINT planes, UINT bpp, const void *bits)
HBITMAP CreateBitmapIndirect(const BITMAP *bmp)

As above, but bpp specified directly, row always aligned to 2 bytes
If bits not nullptr, must point to bitmap data (including row padding)

Paweł Aszklar (MiNI PW) PiGE Warsaw 2021 11 / 46

GDI Bitmaps

Device‐Independent Bitmaps (DIB)
Attributes described by bitmap header (Note! Header doesn’t point to pixel data):
BITMAPCOREHEADER, BITMAPINFOHEADER, BITMAPV4HEADER, BITMAPV5HEADER
Negative height indicated top‐down bitmap
Variable‐length color table follows header immediately, if it is needed
Note! Check docs to see: when needed, required size and layout!
In packed bitmaps, pixel data immediately follows header (and color table, if present)
HBITMAP CreateDIBSection(HDC hdc, const BITMAPINFO *info, UINT usage,

void **pbits, HANDLE hSection, DWORD offset)
info— despite stated type, can point to memory containing header of any type followed by
color table (if needed)
usage— contents of color table: DIB_RGB_COLORS for RGB values; DIB_PAL_COLORS for WORD
indices into hdc current palette (rarely used).
handle, offset— handle to and offset into memory‐mapped bitmap file, pass nullptr to
allocate new bitmap instead
pbits— output parameter, receives pointer to pixel data (can be nullptr)

GetDIBits, SetDIBits—Device‐Dependent to/from Device‐Independent Bitmap conversion
Paweł Aszklar (MiNI PW) PiGE Warsaw 2021 12 / 46

GDI Bitmaps

Device‐Independent Bitmap Headers

struct BITMAPHEADER { /*Note: exact field names and types vary between header structs*/
/*BITMAPCOREHEADER ‐ basic pixel data layout*/
DWORD size; // Header struct size in bytes
LONG width, height; // Image width and height (WORD in CORE header, LONG in others)
WORD planes; // Number of color planes (always 1)
WORD bits; // Bits per pixel
/*BITMAPINFOHEADER ‐ pixel data interpretation parameters*/
DWORD compression; // Compression type (BI_RGB ‐ uncompressed)
DWORD imagesize; // Pixel data size, can be 0 if uncompressed
LONG xppm, yppm; // Pixels per meter (for physical size)
DWORD ncolours; // Number of entries in color table (can be 0 if color table unused)
DWORD importantcolours; // Number of significant color table entries (can be 0)
/*BITMAPV4HEADER ‐ color profile attributes (ICM 1.0)*/
DWORD rMask, bMask, gMask, aMask; // Channel masks (BI_BITFIELDS compression)
DWORD colorSpaceType; // Indicates if Color Space is provided
CIEXYZTRIPLE endpoints; // 2.30 Fixed‐point CIEXYZ coordinates of RGB primary colors
DWORD gammaR, gammaG, gammaB; // 16.16 Fixed‐point gamma coefficients
/*BITMAPV5HEADER ‐ additional/alternative color profile attributes (ICM 2.0)*/
DWORD intent; // Intended color space conversion method
DWORD profileData; // Offset in bytes to color profile data
DWORD profileSize; // Size in bytes of color profile data
DWORD reserved; // Unused, always 0

};

Paweł Aszklar (MiNI PW) PiGE Warsaw 2021 13 / 46

GDI Palettes

Palettes

Array of colors that can drawn/displayed on a device
Most devices don’t support palettes any more.
Used mostly for memory contexts operating on bitmaps with indexed colors
Creating logical palette: CreatePalette
Modification: ResizePalette, SetPaletteEntries
Applying palette to context: SelectPalette→RealizePalette

If realized palette is modified: UnrealizeObject→RealizePalette

Freeing palette: DeleteObject

Paweł Aszklar (MiNI PW) PiGE Warsaw 2021 14 / 46

GDI Brushes

Brushes
Used to fill interiors of closed figures: polygons, ellipses, paths, …
Represent a pattern used for filling
Pattern is repeated (tiled)
Tiling origin defined by context’s brush origin: SetBrushOrgEx, GetBrushOrgEx
Note: that means pattern will not move if object is drawn in different position

Brush origin in device coordinates (default: (0,0), i.e. top‐left corner of drawing area)
Pattern position and size will not change with context’s coordinate mapping/transformations
Obtaining stock brushes: GetStockObject

WHITE_BRUSH, LTGRAY_BRUSH, GRAY_BRUSH, DKGRAY_BRUSH, BLACK_BRUSH— grayscale, solid
DC_BRUSH— solid brush, uses context’s current DC brush color
GetDCBrushColor, SetDCBrushColor, can be changed while selected
NULL_BRUSH— draws nothing

Obtaining stock system color brushes: GetSysColorBrush
any symbolic constant with COLOR_ prefix
colors used by system for drawing different parts of a window

Paweł Aszklar (MiNI PW) PiGE Warsaw 2021 15 / 46

GDI Brushes

Brushes
Creating solid brush — fills with constant color: HBRUSH CreateSolidBrush(COLORREF color)
Creating hatch pattern brush — fills with tiling hatches

Type: HS_HORIZONTAL, HS_VERTICAL, HS_FDIAGONAL, HS_BDIAGONAL, HS_CROSS, HS_DIAGCROSS
Hatches use constant color, gaps use background (depends background mixing mode)
HBRUSH CreateHatchBrush(int hatch, COLORREF color)

Creating bitmap pattern brush — fills with tiling bitmap
HBRUSH CreatePatternBrush(HBITMAP bmp)— from DDB or DIB handle
HBRUSH CreateDIBPatternBrushPt(const void *packedDIB, int usage):
packedDIB pointer to packed device‐independent bitmap

usage color table type (see CreateDIBSection here)
HBRUSH CreateBrushIndirect(const LOGBRUSH *br)
lbStyle lbHatch lbColor type
BS_NULL ignored ignored empty brush
BS_SOLID ignored color solid brush
BS_HATCHED hatch color hatch pattern
BS_PATTERN bmp ignored bitmap pattern
BS_DIBPATTERNPT packedDIB usage bitmap pattern

struct LOGBRUSH {
UINT lbStyle;
COLORREF lbColor;
ULONG_PTR lbHatch;

};

Delete brush: DeleteObject (not necessary for stock brushes, but not harmful either)
Paweł Aszklar (MiNI PW) PiGE Warsaw 2021 16 / 46

GDI Pens

Pens

Used for drawing lines, curves, outlines of filled shapes
Attributes:

Width
Brush (sometimes only color — equivalent to using solid brush)
Join and end cap styles
Dash pattern

Simple pens: CreatePen, CreatePenIndirect
Extended — cosmetic and geometric pens: ExtCreatePen
Stock pens: GetStockObject

WHITE_PEN, BLACK_PEN— solid white/black cosmetic pen
DC_PEN— solid cosmetic pen, uses context’s current DC pen color
GetDCPenColor, SetDCPenColor, can be changed while selected
NULL_PEN— draws nothing

Paweł Aszklar (MiNI PW) PiGE Warsaw 2021 17 / 46

GDI Pens

Simple Pens

HPEN CreatePen(int lopnStyle, int lopnWidth,
COLORREF lopnColor)

HPEN CreatePenIndirect(LOGPEN *pen)

struct LOGPEN{
UINT lopnStyle;
POINT lopnWidth; //y unused
COLORREF lopnColor;

};
lopnWidth

pen width in world units
effective width (in pixels) depends on all transformations
if 0, effective width always 1px

lopnStyle— line style, one of:
PS_SOLID, PS_DASH, PS_DOT, PS_DASHDOT, PS_DASHDOTDOT
if effective width> 1px pen always solid (transformations change pen’s appearance)
PS_NULL— draws nothing
PS_INSIDEFRAME— solid pen, entire width inside the shape (only some closed figures)

lopnColor— pen color
Simple pens have round caps and joins

Paweł Aszklar (MiNI PW) PiGE Warsaw 2021 18 / 46

GDI Pens

Cosmetic and Geometric Pens
HPEN ExtCreatePen(DWORD style, DWORD width, const LOGBRUSH *brush,

DWORD dashCount, const DWORD *dashes)
style— combination of:

pen type – PS_COSMETIC or PS_GEOMETRIC
line style — one of simple pen styles,
PS_ALTERNATE (draws every other pixel) or
PS_USERSTYLE (user defined dash style)
join style (geometric pens only) — one of:
PS_JOIN_ROUND round
PS_JOIN_MITER sharp (mitered) if within context’s

miter limit, otherwise beveled
PS_JOIN_BEVEL flat (beveled)

cap style (geometric pens only) — one of:
PS_ENDCAP_ROUND round

PS_ENDCAP_SQUARE square (extended half
the width past the end)

PS_ENDCAP_FLAT flat
Paweł Aszklar (MiNI PW) PiGE Warsaw 2021 19 / 46

GDI Pens

Cosmetic and Geometric Pens
HPEN ExtCreatePen(DWORD style, DWORD width, const LOGBRUSH *brush,

DWORD dashCount, const DWORD *dashes)
width:

Geometric — pen width in world units (undergoes transformations), must be> 0
Cosmetic — must be 1, effective width always 1px

brush:
Geometric — describes brush pattern used to draw lines
Cosmetic — describes line color (i.e. brushmust describe solid brush)

dashCount, dashes— custom dash style array and it’s count
Only for PS_USERSTYLE pens, otherwise both must be 0
First value — first dash length; second value — first space length, …
Geometric — lengths in world units
Cosmetic — lengths in device dependant style units (unit length of 3px on my screen)
Max count 16, pattern repeats for even counts or is reversed for odd

Extended pens ignore background color
(Draw as if with transparent background mixing mode, regardless of actual mode of the context)

Paweł Aszklar (MiNI PW) PiGE Warsaw 2021 20 / 46

GDI Pens

Pens — Summary
Simple pens with 0 width almost like cosmetic extended pens, except:

Ones with dash pattern use context’s background mixing mode for gaps
(gaps always transparent for extended pens)
Must use solid color

Simple pens with width≥ 1 behave almost like extended geometric pens, except:
Dash pattern used only if effective width is 1 (geometric pens always use dash pattern)
Dash pattern uses context’s background mixing mode for gaps
(gaps always transparent for extended pens)
Must use solid color, can’t change join and end cap styles

Sharp joins appearance controlled by miter limit:
Miter length — distance between intersection of line walls on the inside and outside of a join
Miter limit — maximum ratio between miter length and pen width, above which join is beveled
GetMiterLimit, SetMiterLimit— check/set context’s miter limit (default: 10.0)

Created pens need to be released: DeleteObject
(not necessary for stock pens, but not harmful either)

Paweł Aszklar (MiNI PW) PiGE Warsaw 2021 21 / 46

GDI Regions

Regions

Represents arbitrary area
Stored as set of axis‐aligned rectangles
All coordinates as 27‐bit signed integers
Referred to by HRGN handle
When created, usually represent the interior of given shape
When passed to a function, handle must be a valid region, even if it’s used as output
Contrary to other GDI objects, all region handles need to be destroyed (DeleteObject)
Operations such as selecting a region into device context create copies instead of assuming ownership like with
other objects

Paweł Aszklar (MiNI PW) PiGE Warsaw 2021 22 / 46

GDI Regions

Creating Regions
Rectangular Region:
HRGN CreateRectRgn(int x1, int y1, int x2, int y2)
HRGN CreateRectRgnIndirect(const RECT * rect)

x1, y1— Top‐left corner
x2, y2 – Bottom‐right corner
rect— RECT structure specifying upper‐left and lower‐right corners

Rounded Rectangle Region:
HRGN CreateRoundedRectRgn(int x1, int y1, int x2, int y2, int w, int h)

x1, y1— Top‐left corner
x2, y2— Bottom‐left corner
w, h—Width and height of ellipse used to round the corners

Elliptical Region:
HRGN CreateEllipticRgn(int x1, int y1, int x2, int y2)
HRGN CreateEllipticRgnIndirect(const RECT * rect)

rect— Bounding rectangle of the ellipse
x1, y1—Upper‐left corner of ellipse’s bounding rectangle
x2, y2— Lower‐left corner of ellipse’s bounding rectangle

Paweł Aszklar (MiNI PW) PiGE Warsaw 2021 23 / 46

GDI Regions

Creating Regions

Polygonal Region:
HRGN CreatePolygonRgn(const POINT * ptList, int ptCount, int mode);
HRGN CreatePolyPolygonRgn(const POINT * ptList, const INT * ptCounts, int polyCounts, int mode);

ptList— array of vertex coordinates of the polygon(s)
ptCount— number of vertices in a polygon
ptCounts— array with number of vertices in each polygon (ptList contains flat list of points,
last vertex of a polygon is immediately followed by first vertex of the next)
mode— Fill mode:
ALTERNATE alternate mode (odd‐even)

WINDING winding mode (non‐zero winding value)
See slides below

Paweł Aszklar (MiNI PW) PiGE Warsaw 2021 24 / 46

GDI Regions

Recreating Regions
DWORD GetRegionData(HRGN rgn, DWORD size,

RGNDATA * data)
rgn— region handle
size— size of data buffer in bytes
data— output buffer for region data
If data is nullptr, returns required data buffer size
If function fails (e.g. size to small) returns 0
Otherwise returns size

HRGN ExtCreateRegion(const XFORM * mtx,
DWORD size,
const RGNDATA * data)

mtx— region transformation (see slides below)
size— size of data buffer in bytes
data— region data

struct RGNDATA {
struct RGNDATAHEADER {

//header size in bytes
DWORD dwSize;
//must be RDH_RECTANGLES
DWORD iType;
//number of rectangle
DWORD nCount;
//size of Buffer
DWORD nRgnSize;
//bounding rectangle
RECT rcBound;

} rdh;
char Buffer[];

};

Paweł Aszklar (MiNI PW) PiGE Warsaw 2021 25 / 46

GDI Regions

Region Operations
Comparing regions: BOOL EqualRgn(HRGN rgn1, HRGN rgn2)
Replace with rectangular region (rgnmust be valid):
BOOL SetRect(HRGN rgn, int x1, int y1, int x2, int y2)
Combining regions:
int CombineRgn(HRGN dst, HRGN src1, HRGN src2, int mode)

dst—must already exist, area replaced with te result
mode:
RGN_COPY Copy of src1

RGN_OR Set union (src1∩src2)
RGN_AND Set intersection (src1∪src2)

RGN_DIFF Set difference (src1\src2)
RGN_XOR Set symmetric difference ((src1\src2)∪(src2\src1))

Move region area: int OffsetRgn(HRGN rgn, int x, int y)
Retrieve region bounding box: int GetRgnBox(HRGN rgn, RECT * rc)
Hit‐testing: BOOL PtInRegion(HRGN rgn, int x, int y)
BOOL RectInRegion(HRGN rgh, const RECT *rc)

Paweł Aszklar (MiNI PW) PiGE Warsaw 2021 26 / 46

GDI Paths

Paths

Paweł Aszklar (MiNI PW) PiGE Warsaw 2021 27 / 46

GDI Fonts

Fonts

Paweł Aszklar (MiNI PW) PiGE Warsaw 2021 28 / 46

GDI Transformations

Coordinate Spaces

World space
Page space
Device (Context) space
Physical Device space

Paweł Aszklar (MiNI PW) PiGE Warsaw 2021 29 / 46

GDI Transformations

World to Page Space Transformations

Paweł Aszklar (MiNI PW) PiGE Warsaw 2021 30 / 46

GDI Transformations

Page to Device Space Transformation

Paweł Aszklar (MiNI PW) PiGE Warsaw 2021 31 / 46

GDI Transformations

Device to Physical Device Transformation

Paweł Aszklar (MiNI PW) PiGE Warsaw 2021 32 / 46

GDI Clipping

Clipping Regions
System Region

Window rectangle (CreateWindow,SetWindowPos,GetWindowPos,etc.)
Window region (SetWindowRgn,GetWindowRgn,GetWindowRgnBox) ‐ don’t set on windows
with any frame (caption bar, border)
Window visibility (Minimized, WS_CLIPCHILDREN,WS_CLIPSIBLINGS)
Client area (WM_PAINT, WM_ERASEBKGND)
Update region (InvalidateRect, InvalidateRgn, ValidateRect, ValidateRgn, GetUpdateRect,
GetUpdateRgn, ExcludeUpdateRgn)

Meta region
SetMetaRgn (calculates intersection clip/existing meta, replaces meta, clears clip, no way to
expand w/o resetting DC), GetMetaRgn

Clip region: ExtSelectClipRgn, GetClipRgn, SelectClipRgn(same‐ish as SelectObject w/
region), SelectClipPath, OffsetClipRgn, ExcludeClipRect, IntersetClipRect, GetClipBox
GetRandomRgn ‐ Random access to System (4, SYSRGN); Meta (2); Clip (1); and API (3,
clip∩meta) regions

Paweł Aszklar (MiNI PW) PiGE Warsaw 2021 33 / 46

GDI When to Draw

When to Draw

Parts of a window need redrawing when it or other windows move/resize/change
z‐order/etc.
Windows mark for update any such region
InvalidateRect, InvalidateRgn mark for update (e.g. redrawing entire window when resizing,
otherwise only new part repainted)
WM_PAINT generated if update region not empty (low priority)
Force immediate repaint w/ RedrawWindow,UpdateWindow
prevent w/ ValidateRect,ValidateRgn
Paint anytime w/ GetDC, GetWindowDC, GetDCEx ‐ might cause fragmentation of painting
logic
other messages that might affect painting: WM_SYSCOLORCHANGE, WM_DISPLAYCHANGE

Paweł Aszklar (MiNI PW) PiGE Warsaw 2021 34 / 46

GDI When to Draw

WM_PAINT

BeginPaint ‐ sends WM_NCPAINT, obtains DC for client area∩update region (conceptually:
GetDCEx(hwnd, GetUpdateRgn, DCX_INTERSECTRGN)), sends WM_ERASEBKGND, fills
PAINTSTRUCT, validates update entire region (preventing duplicatedWM_PAINTS),hides caret
EndPaint ‐ releases dc, restores caret (if it was hidden)

Paweł Aszklar (MiNI PW) PiGE Warsaw 2021 35 / 46

GDI When to Draw

WM_NCPAINT

Sent when window frame needs repainting
wParam is update region (always rectangle)
GetDCEx(hwnd, wParam, DCX_WINDOW|DCX_INTERSECTRGN)

Pass to DefWindowProc, YMMV with painting on window frame of top‐level windows

Paweł Aszklar (MiNI PW) PiGE Warsaw 2021 36 / 46

GDI When to Draw

WM_ERASEBKGND

Indicates window’s background needs repainting
wParam is HDC
if handled return 1 or 0 to indicate background was erased (fErase of PAINTSTRUCT)
DefWindowProc will erase with class background brush (hbrBackground) if it’s not null
Set when registering class, SetClassLongPtr, GetClassLongPtr ‐ either assign a brush or system
color constant incremented by 1 (COLOR_XXX + 1)

Paweł Aszklar (MiNI PW) PiGE Warsaw 2021 37 / 46

GDI Drawing and Filling Shapes

Lines and Curves
using DC Current Position

MoveToEx, GetCurrentPositionEx
AngleArc, ArcTo, LineTo, PolyLineTo, PolyBezierTo, PolyDraw
use current pen (SelectObject ‐ returns old pen, either restore it ‐ preferable ‐ or
release/destroy) for outline
Simple dashed pens: GetBkMode, SetBkMode (OPAQUE ‐ GetBkColor, SetBkColor;
TRANSPARENT)
All pens: foreground mixing mode (GetROP2, SetROP2) ‐ many different bitwise operations
between 1, 0, source (pen), destination (screen) colours using NOT, AND, OR, XOR
GetMiterLimit, SetMiterLimit
implicit starting point at current position, afterwards current position moved to the last point
of the shape.
shape not filled

Paweł Aszklar (MiNI PW) PiGE Warsaw 2021 38 / 46

GDI Drawing and Filling Shapes

Lines and Curves
Ignoring Current Position

Arc,PolyBezier,Polyline,PolyPolyline
Starting point provided explicitly
Current position doesn’t change
otherwise same as ‐To variants
StrokePath

Paweł Aszklar (MiNI PW) PiGE Warsaw 2021 39 / 46

GDI Drawing and Filling Shapes

Closed Figures

Rectangle,RoundRect,Ellipse,Chord,Pie,Polygon,PolyPolygon
StrokeAndFillPath ‐ will close any open figure
outline w/ current pen (see prev. slide for DC params)
filled w/ current brush (SelectObject ‐ same as for pen; GetBrushOrgEx, SetBrushOrgEx)
current position not modified
fill mode for self‐intersecting boundary or shapes w/ holes (GetPolyFillMode,
SetPolyFillMode):

alternate ‐ pixel filled if half‐line from it in any direction crosses shape boundary odd number of
times
winding ‐ accounts for drawing direction for each part of the boundary. Each time half‐line cast
from the point is intersected by the boundary going clockwise add 1, counter‐clockwise subtract
1. Fill pixels with non‐zero winding value.

Paweł Aszklar (MiNI PW) PiGE Warsaw 2021 40 / 46

GDI Drawing and Filling Shapes

Filling

PatBlt ‐ fill/combine rectangle w/ current brush
FillPath ‐ fill path (closing opened figures; StrokeandFillPath, but w/o outline)
PaintRgn, FillRgn ‐ fill region w/ current or supplied brush
FrameRgn ‐ paint region outline of given thickness w/ supplied brush
InvertRgn ‐ invert color bits within region
FloodFill, ExtFloodFill
GdiGradientFill

GradientFill exisst and is equivalent to Gdi‐ variant, but defined in msimg32.lib instead of gdi32.lib

Paweł Aszklar (MiNI PW) PiGE Warsaw 2021 41 / 46

GDI Block Transfers

Block Transfer

BitBlt ‐ copy/combine rectangle from source to destination DC w/o scaling
MaskBlt ‐ copy/combine rectangle from source to destination DC w/o scaling, w/ a mask
StretchBlt ‐ copy/combine rectangle from source to rectangle (possibly of different size) in
destination DC (allows for scaling) ‐ GetStretchBltMode, SetStretchBltMode
StretchDIBits ‐ same as above, but a source is device‐independent bitmap
GdiTransparentBlt ‐ copy rectangle from source to rectangle (possibly of different size) in
destination DC (allows for scaling, but no mirroring) treating specified color in source as
transparent
PlgBlt ‐ copy rectangle from source into parallelogram in destination DC w/ optional mask
(allows for scaling and shearing)

AlphaBlend, TransparentBlt exist and are equivalent to Gdi‐ variants, but defined in msimg32.lib instead of gdi32.lib

Paweł Aszklar (MiNI PW) PiGE Warsaw 2021 42 / 46

GDI Block Transfers

Text

TextOutW, ExtTextOutW, DrawTextW, DrawTextExW
GetTextColor, SetTextColor, GetBkColor, SetBkColor, GetTextAlign, SetTextAlign,
GetTextCharacterExtra, SetTextCharacterExtra, GetTextExtentPoint32W, GetTextMetricsW,
SetTextJustification
GetGraphicsMode, SetGraphicsMode ‐ under advanced mode vector/truetype fonts fully
transformed

Paweł Aszklar (MiNI PW) PiGE Warsaw 2021 43 / 46

GDI Flicker‐Free Drawing

Flicker‐Free Drawing
Avoid flickering when drawing by double‐buffering
Block background erasure (set class background brush to null or intercept
WM_ERASEBKGND)
When painting (hdc ‐ client area device context; width, height ‐ client rectangle size):
//Create in‐memory buffer and associated device context
HDC memDC = CreateCompatibleDC(hdc);
HBITMAP memBmp = CreateCompatibleBitmap(hdc, width, height);
HBITMAP oldBmp = reinterpret_cast<HBITMAP>(SelectObject(memDC, memBmp));

... //Fill background and draw on memDC

//Clean‐up
BitBlt(hdc, 0, 0, width, height, memDC, 0, 0, SRCCOPY);
DeleteObject(SelectObject(memDC, oldBmp));
DeleteDC(memDC);

Paweł Aszklar (MiNI PW) PiGE Warsaw 2021 44 / 46

GDI Summary

Device Context Attributes

Table of device state default values

Paweł Aszklar (MiNI PW) PiGE Warsaw 2021 45 / 46

Windows API Lecture 4 The End

End of Windows API Lecture 4

Thank you for listening! ,

Paweł Aszklar (MiNI PW) PiGE Warsaw 2021 46 / 46

	GDI
	Overview
	Device Context
	Bitmaps
	Palettes
	Brushes
	Pens
	Regions
	Paths
	Fonts
	Transformations
	Clipping
	When to Draw
	Drawing and Filling Shapes
	Block Transfers
	Flicker-Free Drawing
	Summary

	Windows API Lecture 4
	The End

