
Szymon Szczepański
Maciej Świechowski

Paweł Aszklar

Windows Forms

szymon.szczepanski@gmail.com
m.swiechowski@mini.pw.edu.pl
p.aszklar@mini.pw.edu.pl

mailto:szymon.szczepanski@gmail.com
mailto:m.swiechowski@mini.pw.edu.pl
mailto:p.aszklar@mini.pw.edu.pl

UserControl

• Composite controls

• Reusable portions of the user interface

• Similar to forms, but have no border, title bar and cannot be top-level windows

• Allow usage of standard controls with their functionality and appearance

• For more complicated views improve performance of designer

• Do not create control as god controls

• The best practice is have model for UserControl

Data Binding

• Mechanism for connecting control properties with data (one-way or two-way) e.g.:
• Setting the graphic of an image control.
• Setting the background color of one or more controls.
• Setting the size of controls.

• Notify (INotifyPropertyChanged interface or PropertyNameChanged events)

• Simple binding: single values

• Complex data binding: collections
• Typical usage:

• DataGridView and DataSet
• DataSet

• represents relational data (incl. tables and relations)
• supports multiple data views
• supports data changes tracking

• DataGridView
• designed for presentation and modification of tabular data
• extensive support for binding - especially to DataSets and DataTables

Data Source

• Simple binding
• Control.DataBindings.Add

(propertyName, dataSource, dataMember)

• Complex binding:
• DataGridView

• DataSource
• DataMember

• ListBox, ComboBox, …
• DataSource
• DisplayMember, ValueMember, SelectedValue

• Structures to Bind To
• BindingSource
• SimpleObject or IEditableObject
• BindingList<T>
• Array or Collection (IList<T> or preferably IBindingList<T>)
• IEnumerable (through BindingSource)
• ADO.NET (DataSet, DataTable, DataColumn, DataViewManager)

Data Binding Components

• BindingSource

• component encapsulating data source to simplify binding (both simple &
complex)

• currency management

• change notifications

• ContainerControl.BindingContext

• manages collection of instances of BindingManagerBase:

• PropertyManagers for simple binding

• CurrencyManagers for complex
binding

Custom Controls

• Composite control (user control)
• composition of Windows Forms controls in a common container (UserControl)
• the only choice with design-time support
• It’s most common way to create custom control

• Extended control (derived control)
• inherited from an existing Windows Forms control
• functionality extended
• OnPaint() method overriden to create a custom appearance
• Often use if some custom behaviors/styles are neede but control is one of core

controls

• Custom control
• inherited from one of the base control classes

• Component, Control, ScrollableControl, ContainerControl
• the most flexible (and the most time-consuming) way to create controls
• Use only when you need create something from scratch

Visual Studio Support

• Every time a class library is compiled, Visual Studio scans through the classes it
contains, and adds each component or control to a special temporary tab at the
top of the Toolbox

• The first time a control is added to a project (e.g. by dragging from the Toolbox),
Visual Studio:

• adds a reference to the assembly where the control is defined

• copies this assembly to the project directory

• Toolbox can be customized

• toolbox is a user-specific Visual Studio setting, not a project-specific setting

• Every change in control will be available after build

Preprocessing Input Messages

• PreProcessMessage

• virtual method on Control class

• messages pre-processed: WM_KEYDOWN, WM_SYSKEYDOWN, WM_CHAR,
WM_SYSCHAR

• return:

• true – for processed messages

• base.PreProcessMessage – otherwise

• More specialized methods:

• IsInputChar(), IsInputKey()

• ProcessCmdKey()

• ProcessDialogChar(), ProcessDialogKey()

Resources

• An assembly is a collection of types and optional resources

• the binary data, text files, audio files, video files, string tables, icons, images,
XML files

• Localized applications

• a problem with multilingual user interface

• This step involves customizing an application for specific cultures or regions.
If the globalization and localizability steps have been performed correctly,
localization consists primarily of translating the user interface.

• for each resource added to an assembly, it is possible to specify the culture
information (a language and country, e.g. "pl-PL", "en-US", "de-De", "de-AT")

• satellite assemblies

• Winres.exe

Satellite Assembly

• A single satellite assembly must include all
the resources for a particular culture. In
other words, you should compile multiple
.txt or .resx files into a single binary
.resources file.

• There must be a separate subdirectory in
the application directory for each localized
culture that stores that culture's resources.
The subdirectory name must be the same
as the culture name. Alternately, you can
store your satellite assemblies in the global
assembly cache. In this case, the culture
information component of the assembly's
strong name must indicate its culture.

Typed Resource Files

• .txt

• textual name/value format

• an easy way to add string resources

• .resx

• the XML format

• support for both strings and other objects such
as images

• .resources

• the binary format

• a binary equivalent of the XML file

• the only format that can be embedded in an
assembly, the other formats must be converted

Resources with Visual Studio

• Adding resources
• in resx files:

• Project > Add New Item > Resources File
• or: Project > Properties > Resources
• a property in a special class is generated for easier access to resource

• Editing resources
• Visual Studio built-in editors

• the binary editor, image editor
• external editors (e.g. the Paint for image files)

• other applications can be associated with types of resources

• Compiling resources into assemblies
• resgen.exe tool is called automatically

Retrieving Resources

• ResourceManager class to retrieve data from resources

Localizing Applications

• Retrieved resources language:

• ResourcesManager.Get...(name, culture)

• Thread.CurrentUICulture

• VS-generated helper class:

• Resources.Culture

• Default data formatting language:

• Thread.CurrentCulture

• Keyboard input language:

• InputLanguage.InstalledInputLanguages,
InputLanguage.DefaultInputLanguage,
InputLanguage.CurrentInputLanguage

• Application.CurrentInputLanguage

Application Settings

• The Application Settings feature of Windows Forms makes it easy to create,
store, and maintain custom application and user preferences on the client
computer.

• Application-scoped settings can be stored in either the machine.config or
app.exe.config files. Machine.config is always read-only, while app.exe.config is
restricted by security considerations to read-only for most applications

• User-scoped settings can be stored in app.exe.config, in which case they are
treated as static defaults.

• on-default user-scoped settings are stored in a new file, user.config, where user
is the user name of the person currently executing the application. You can
specify a default for a user-scoped setting with DefaultSettingValueAttribute.
Because user-scoped settings often change during application execution,
user.config is always read/write.

• All three configuration files store settings in XML format

Message Handling Hooks - Application.AddMessageFilter()

• Use a message filter to prevent specific events from being raised or to perform
special operations for an event before it is passed to an event handler. Message
filters are unique to a specific thread.

Overriding Window Procedure

• Message: {HWnd, LParam, Msg, Result, WParam}

• Form.Handle – HWND

GDI+

• Successor to Windows Graphics Device Interface (GDI)

• supports GDI for compatibility with existing applications

• optimizes many of the capabilities of GDI

• provides additional features

• Class-based application programming interface (API)

• two independent implementations: .NET (managed code) and unmanaged
code

• Availability:

• included in Windows XP+ and Windows Server 2003+

• redistributable for NT 4.0 SP6, 2000, 98, Me

• Gdiplus.dll

Graphics Class

• Graphics class:

• core of GDI+

• Device Context equivalent

• associated with a particular window on the screen

• contains attributes that specify how items are to be drawn

• improvements (compared to DC):

• less state:
• pens, brushes, paths, images, and fonts as method parameters

• no current position for drawing lines

• separate methods for draw and fill

• GDI object equivalents:

• represented as true objects

• in .NET: implement IDisposable

Using Graphics

• Obtaining Graphics object:

• Paint event handler: PaintEventArgs.Graphics

• Control.CreateGraphics()

• Graphics: FromHdc(), FromHwnd(), FromImage()

• Triggering the Paint Event:

• Control.Invalidate()

• Control.Update(), Control.Refresh()

• Flicker-free drawing: this.DoubleBuffered = true (more efficient since .NET 4.6)

• High DPI - in .NET 4.7

Simple Shapes

• Simple figures:

• DrawLine(), DrawRectangle(), DrawEllipse(), DrawArc(), DrawPolygon()

• FillEllipse(), FillPie(), FillPolygon(), FillRectangle()

• Cardinal splines:

• DrawCurve(), DrawClosedCurve()

• FillClosedCurve()

• Bezier splines:

• DrawBezier(), DrawBeziers()

Paths

• Formed by combining lines, rectangles, and simple curves

• GraphicsPath class:

• adding simple figures:
AddLine(), AddRectangle(), AddEllipse(), AddArc(), AddPie(), AddBezier(),
AddCurve(), AddClosedCurve(), AddPolygon(), AddString()

• joining two paths: AddPath()

• Graphics.DrawPath()

• Graphics.FillPath()

Regions

• Describe interiors of graphics shapes composed of rectangles and paths

• Region class

• Hit testing

• Region.IsVisible(point, graphics)

• Clipping

• Graphics.SetClip(region)

Brushes

• Brush – abstract base class for all brushes:

• SolidBrush, HatchBrush, TextureBrush, LinearGradientBrush,
PathGradientBrush

Pens

• Attributes

• Width

• Alignment (PenAlignment enumeration)

• Line caps:

• StartCap, EndCap (LineCap enumeration)

• CustomStartCap, CustomEndCap (CustomLineCap class)

• LineJoin (LineJoin enumeration)

• DashStyle, DashPattern, DashCap

• Brush

Images

• Image – abstract base class

• Bitmap – derived from Image

• contains specialized methods for loading, displaying, and manipulating
raster images

• Graphics.DrawImage…()

• many overrides available

• flexible resizing/cropping possibilites

• influenced by Graphics.InterpolationMode

• influenced by Graphics.Transform

Image encoders/decoders

• Listing installed encoders and decoders:

• ImageCodecInfo.GetImageEncoders(),
ImageCodecInfo.GetImageDecoders()

• return arrays of ImageCodecInfo

Text

• Graphics.DrawString()

• at specified location

• in a rectangle

• StringFormat argument:

• Alignment, LineAlignment

• SetTabStops()

• FormatFlags

• TextRenderingHint – allows switching on antialiasing

• Graphics.MeasureString() – find size before drawing

Text

• TextRenderer

• Native, GDI based, faster

• Matches text displayed by controls

• Better support for international text

• Different wrapping and spacing behavior

• TextRenderer.DrawText(), TextRenderer.MeasutreText()

• Alternatively, to make text inside controls match Graphics.DrawString() output

• For all controls, set in Main:

• For individual Control

Application.SetCompatibleTextRenderingDefault(true);

button1.UseCompatibleTextRendering = true;

Fonts

• Font class

• Metrics

• Font.GetSize()

• FontFamily.GetEmHeight()

• FontFamily.GetCellAscent()

• FontFamily.GetCellDescent()

• FontFamily.GetLineSpacing()

Transformations

• Matrix class

• Graphics.Transform

• helper methods:

• ScaleTransform()

• RotateTransform()

• TranslateTransform()

• Transformation order is significant

Graphics Containers

• GraphicsContainer class

• Stores state of Graphics:

• link to device context

• quality settings

• transformations

• clipping region

• Alternative:

• Graphics.Save()

