On the cyclic coloring conjecture

Stanislav Jendrol'
(joint work with Roman Soták)

A cyclic coloring of a plane graph G is a coloring of its vertices such that vertices incident with the same face have distinct colors. The minimum number of colors in a cyclic coloring of a plane graph G is its cyclic chromatic number $\chi_{c}(G)$. For a 2-connected plane graph G let $R(G)$ be the graph (called the reduction of G) obtained from G by replacing all maximal paths all interior vertices of which have degree 2 with edges.
We show that the Cyclic Coloring Conjecture of Borodin from 1984, saying that every connected plane graph G has $\chi_{c}(G) \leq\left\lfloor\frac{3}{2} \Delta^{*}(G)\right\rfloor$, can be reduced to hold for 2-connected plane graphs G whose reductions $R(G)$ are simple 3-connected plane graphs. We have received four different upper bounds for graphs G from this restricted family. Moreover, we have proved that the conjecture of Borodin holds for 2-connected plane graphs with a large maximum face degree and for two wide families of plane graphs.

