Long monochromatic paths

Andrzej Dudek, Western Michigan University

The size-Ramsey number $\hat{r}(F)$ of a graph F is the smallest integer m such that there exists a graph G on m edges with the property that any coloring of the edges of G with two colors yields a monochromatic copy of F. First we focus on the size-Ramsey number of a path P_{n} on n vertices. In particular, we show that $5 n / 2-15 / 2 \leq \hat{r}\left(P_{n}\right) \leq 74 n$ for n sufficiently large improving the previous lower bound due to Bollobás and the upper bound due to Letzter. Next we study long monochromatic paths in edge-colored random graph $\mathcal{G}(n, p)$ with $p n \rightarrow \infty$. We also consider a related problem and study the size of the largest monochromatic components in edge-colored $\mathcal{G}(n, p)$. Some of the proofs use the (sparse) regularity lemma. This is a joint work with P. Prałat.

