The forbidden poset problem (for consecutive levels)

Gyula O.H. Katona
MTA Rényi Institute
Budapest Pf 127, 1364 Hungary
ohkatona@renyi.hu

Abstract

The family of all subsets of an n-element set forms a poset for the binary relation "subset". This is the Boolean lattice B_{n}, but we disregard the lattice operations here. Take a "small" poset P with the binary relation (order) \prec. An embedding of P into B_{n} is a mapping $\phi: P \rightarrow B_{n}$ where $a \prec b$ implies $\phi(a) \subset \phi(b)$. Since a family \mathcal{F} is a subset of B_{n} one can speak about the embedding of P into a family \mathcal{F} as well. We say in this case \mathcal{F} contains a copy of P. The general problem is to determine $\max |\mathcal{F}|$ where $\mathcal{F} \subset 2^{[n]}$ is a family without a copy of P. This maximum is denoted by $\mathrm{La}(n, P)$. If P has two comparable elements, the poset is denoted by $I . \mathrm{La}(n, I)$ is the maximum number of subsets without inclusion. This was determined by Sperner's theorem (the largest binomial coefficient of order n). We will survey results exactly or asymptotically determining $\mathrm{La}(n, P)$. A more general problem is when two small posets (say P_{1}, P_{2}) are forbidden. Then the maximum is denoted by $\mathrm{La}\left(n, P_{1}, P_{2}\right)$. One of the completely solved cases is when P_{1} is the so-called Y poset (it has 4 distinct elements with the relations $a<b, b<c, b<d)$ and P_{2} is its complement (turning the relations back). Then $\mathrm{La}\left(n, P_{1}, P_{2}\right)$ is attained for the two middle levels of B_{n}. The area is far from being "completed" as the following example shows. The diamond D is a poset of 4 elements with one minimal and one maximal element a and b where $a \prec c, d \prec b$ (c and d are incomparable). The value of $\mathrm{La}(n, D)$ is not even asymptotically determined. At the end of the lecture we will show new results for the modified problems where the small poset

is forbidden only for consecutive levels of B_{n}. Let us formulate the problem of Y and its complement for this case in terms of subsets. Find the largest family of subsets of an n-element set so that there are no 4 distinct members A, B, C, D such that $A \subset B, B \subset C, B \subset$ $D,|B-A|=|C-B|=|D-B|=1$ and there are no 4 distinct members A, B, C, D such that $A \supset B, B \supset C, B \supset D,|A-B|=$ $|B-C|=|B-D|=1$. The exact maximum has been determined.

