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1. Introduction

In 1940s Bernstein noticed that if X and Y are independent, then X−Y and
X+Y are independent if and only if X and Y are Gaussian, [3]. This observation
suggested that independence can mean more than one could think. Many other
examples of so-called independence characterizations have been identified through
the years. One of the highlights in this area is Lukacs’ (1955) characterization
of the Gamma distribution by the independence of X + Y and X/(X + Y ),
[21]. In 1996 Casalis and Letac wrote, that independence characterizations of
distributions give insight into the laws of nature and may reveal quite beautiful
mathematics, [6]. In the cited paper they showed a new way, compared to Olkin
and Rubin, [28], to generalize the Lukacs theorem to symmetric positive definite
matrices.

Another celebrated characterization origins from the Matsumoto-Yor (MY)
property, see [24], [25], which says that for independent X and Y having GIG
and Gamma distributions, random variables 1/(X + Y ) and 1/X − 1/(X + Y )
are also independent. First characterization of GIG and Gamma distributions
through this property was given in [20]. It has been widely generalized and
modified: symmetric cones [14], free probability [31] and others [5], [22], [23].
In 2012 a whole family of independence properties of a MY type was given by
Koudou and Vallois [18]. The latter paper presents all possible distributions of
independent X and Y for which there exists a (very regular, see [18]) function
f such that f(X + Y ) and f(X) − f(X + Y ) are also independent. The Lukacs
property corresponds to f(x) = log x and the MY property to f(x) = 1/x.
Another important case identified in [18] was f(x) = ln(1 + 1/x). That one
concerns Kummer and Gamma distributions and can be formulated as follows:
Let X has the Kummer distribution K(a, b, c) with density

(1.1) fX(x) ∝ xa−1(1 + x)−(a+b)e−cxI(0,∞)(x)

and Y has the Gamma distribution G(b, c) with density

fY (y) ∝ yb−1e−cyI(0,∞)(y),

where a, b, c > 0. Suppose that X and Y are independent and let

(1.2) U = X + Y and V =
1 + 1/(X + Y )

1 + 1/X
.

Then U and V are also independent.

To derive related characterization, however, the authors needed to impose
technical conditions of differentiability ([18]) or local integrability ([17]) of log-
arithms of strictly positive densities. Recently a regression version of this char-
acterization under natural integrability assumption (and with no assumptions
concerning densities) was given in [33]. In [30] even the integrability assumption
was cleared out through the change of measure technique. In the last-mentioned
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paper also another independence property and a related characterization con-
cerning Kummer and Gamma distributions were considered. The property was
formulated by Hamza and Vallois in [8] and we will call it HV property in the
sequel. It says that if X ∼ K(a, b − a, c) (which means that X has Kummer
distribution with parameters a, b − a and c) and Y ∼ G(b, c), a, b, c > 0 are
independent random variables and if

(1.3) T0(x, y) = (y/(1 + x), x (1 + y/(1 + x))) ,

then the random vector (U, V ) = T0(X,Y ) has independent components, U ∼
K(b, a − b, c) and V ∼ G(a, c). Note that this is not a MY type property: there
is no function f such that U = f(X + Y ) and V = f(X) − f(X + Y ). Further,
in [29] the converse was proved:

Theorem 1.1. Let X and Y be two independent positive random vari-
ables with positive densities on (0,∞) such that its logarithms are locally inte-
grable. Let (U, V ) = T0(X,Y ). Suppose that U and V are independent. Then
there exist constants a, b, c > 0, such that X ∼ K(a, b − a, c), Y ∼ G(b, c) or,
equivalently, U ∼ K(b, a− b, c) and V ∼ G(a, c).

The proof was based on solving an associated functional equation. Com-
pletely different methods were used in [30], where a regression version of this
characterization was proven. First, under integrability assumptions the recur-
rences for moments of X and Y were derived and solved. Then the integrability
assumptions were eliminated through the change of measure technique and so
Theorem 1.1 holds without any assumptions on densities, even their existence.
Note also that [30] contains many references on Kummer distribution including
its origins, motivations and various applications.

In this paper we consider the HV property and the related characterization
of Kummer and Gamma distributions in the cone of positive definite, symmetric
matrices. An analogue of Theorem 1.1 is proven in Section 5. Before that, in
Section 2, we introduce matrix–Kummer and Wishart distributions. Then, in
Section 3, HV property is adapted to the matrix setting. Section 4 is devoted to
analysis of related functional equations and some technicalities. We also prove
the first main result there, i.e. we solve functional equation (4.10). These results
are applied in Section 5 to prove the main probabilistic result, i. e. the character-
ization of matrix–Kummer and Wishart distributions. Possible areas of impact
and open questions are presented in Section 6.

2. The matrix Kummer distribution

Let r ≥ 1 be an integer. Denote by Ω the linear space of real r×r symmetric
matrices endowed with the inner product ⟨x, y⟩ = tr (xy) for any x, y ∈ Ω. Let



Independence characterization for Wishart and Kummer random matrices 5

Ω+ ⊂ Ω be the cone of positive-definite symmetric real r×r matrices. We denote
by e the identity matrix.

For Σ ∈ Ω+ the Wishart distribution W(b,Σ) can be defined for
b ∈ {0, 1/2, 1, 3/2, . . . , (r − 1)/2} ∪ ((r − 1)/2,∞) as the law of a random vari-
able Y valued in the closure of Ω+ with Laplace transform

E
(
e⟨σ,Y ⟩

)
=

(
det Σ

det(Σ − σ)

)b

, for σ such that Σ − σ ∈ Ω+.

If b > r−1
2 , then Y has density of the form:

W(b,Σ)(dy) =
(det Σ)b

Γr(b)
(det y)b−(r+1)/2 exp(−⟨Σ, y⟩)IΩ+(y)dy,

where Γr is the multivariate Gamma function (see [26]) defined for any complex
number z with ℜ(z) > (r − 1)/2 by

Γr(z) = πr(r−1)/4
r∏

j=1

Γ

(
z − j − 1

2

)
.

We will define matrix version of Kummer distribution following [16]. We say
that random variable X valued in Ω+ has matrix-Kummer distribution with
parameters a > r−1

2 , b ∈ R, Σ ∈ Ω+, denote X ∼ MK(a, b,Σ), if it has the
following density

MK(a, b,Σ)(dx) = C(detx)a−
r+1
2 (det(e + x))−(a+b) exp(−⟨Σ, x⟩)IΩ+(x)dx,

where the normalizing constant C equals to
(
Γr(a)Ψ(a, r+1

2 − b; Σ)
)−1

and Ψ is
a confluent hypergeometric function of the second kind with matrix argument
(see [9], formula (2)). In the literature this distribution is sometimes called the
Kummer-gamma distribution or the Kummer distribution of type II (see e.g. [7],
[27]). It also appeared recently as a member of the family named weighted-type
II Wishart distribution, [2].

3. HV property for positive definite matrices

In [16] Koudou showed that matrix-Kummer and Wishart distributions
have the following property: if X ∼ MK(a, b,Σ) and Y ∼ W(b − a,Σ) are
independent, then

U = P
(
e + (X + Y )−1

)1/2 (
e +X−1

)−1
and V = X + Y
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are independent, where P(y) is endomorphism defined on Ω and for any y ∈ Ω+:

P(y)(x) = yxy, x ∈ Ω.

This is a generalization of the independence property of real-valued random
variables related to transformation (1.2). This property is in the family of
Matsumoto-Yor type independence properties defined in [17, 18]. Recently, Ko lodziejek
showed that this property characterizes matrix–Kummer and Wishart distribu-
tions, [15]. In this section we establish a new independence property of Wishart
and matrix-Kummer random matrices, which is not of Matsumoto-Yor type. A
related characterization is given in Section 5.

We want to find transformation that generalizes T0 defined in (1.3) onto Ω+

and that preserves the independence property for matrix-Kummer and Wishart
distributions.

Let T : Ω2
+ → Ω2

+ be defined as:

(3.1) T (x, y) =

(
P
[
(e + x)−

1
2

]
y, P

[(
e + P

[
(e + x)−

1
2

]
y
) 1

2

]
x

)
.

Note that T is involutive (as in one–dimensional case).

To derive the Jacobian of transformation T , which is done in Proposition
3.1, we need the fact that

(3.2) Det(P(x)) = (detx)r+1,

where Det is the determinant in the space of endomorphisms on Ω (see e.g. [20]
or [26], Theorem 2.1.7).

Proposition 3.1. Let u and v be in the cone of symmetric positive
definite matrices. Denote by T−1 the inverse of T defined in (3.1). Then the
Jacobian of T−1 is equal to

(3.3) JT−1(u, v) = (det[e + u])−(r+1) (det[e + v + u])
r−1
2 .

Moreover, since T is an involution, the Jacobian of T is equal to JT−1 .

The proof of Proposition 3.1 is standard. The same technique was, for
instance, used in [23] for the MY property and in [16] for the other independence
property of Wishart and Kummer matrices.

Proof: Let x and y be in Ω+. Then

(3.4) u := P([e + x]−
1
2 )y ∈ Ω+, v := P([e + u]

1
2 )x ∈ Ω+.

Let T1, T2 : Ω2
+ → Ω2

+ by defined by

T1(x, y) = (w, z) :=
(
x,P([e + x]−

1
2 )y

)



Independence characterization for Wishart and Kummer random matrices 7

and
T2(w, z) = (u, v) :=

(
z,P([e + z]

1
2w)

)
.

Then T = T2 ◦ T1 and we have

(3.5) (x, y) = T−1
1 (w, z) =

(
w,P([e + w]

1
2 )z

)
,

(3.6) (w, z) = T−1
2 (u, v) =

(
P([e + u]−

1
2 )v, u

)
.

Let us note that the Jacobian J2 of T−1
2 equals

Det

(
∗ E
e 0

)
,

where ∗ does not need to be computed and E is the differential of the function
v 7→ [e+ u]−

1
2 v[e+ u]−

1
2

(u is fixed) and equals P([e + u]−
1
2 ). Hence, by (3.2) we get

J2(u, v) = DetE = (det[e + u]−
1
2 )r+1 = (det[e + u])−

r+1
2 .

The Jacobian J1 of T−1
1 can be computed in the same way:

J1(w, z) = Det

(
e 0
∗ F

)
,

where F is the differential of the mapping z 7→ P([e + w]
1
2 )z. Then

J1(w, z) = DetF = (det[e + w])
r+1
2 = det(e + u)−1 det(e + u+ v),

where the last equality follows from definition of w given in (3.6) and ele-
mentary properties of determinant.

Finally, we obtain

J(u, v) = J1(w, z)J2(u, v) = (det(e + u+ v))
r+1
2 (det[e + u])−(r+1) .

Theorem 3.1. Let X and Y be two independent random matrices val-
ued in Ω+. Assume that X has matrix–Kummer distribution MK(a, b, ce) and
Y the Wishart distribution W(a+ b, ce), where a > r−1

2 , b > r−1
2 − a, c > 0.

Then the random matrices

U := P([e +X]−
1
2 )Y, V := P([e + U ]

1
2 )X

are independent. Furthermore, U ∼ MK(a+ b,−b, ce) and V ∼ W(a, ce).
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Proof: Denote densities of X, Y and (U, V ) by fX , fY and f(U,V ), re-
spectively. Since X and Y are independent, we have

f(U,V )(u, v) = |J(u, v)|fX(x)fY (y)IΩ+(u)IΩ+(v),

where (x, y) = T−1(u, v) =
(
P([e + u]−

1
2 )v,P([e + x]

1
2 )u

)
and J is the Jacobian

of T−1 from Proposition 3.1. Elementary properties of trace and determinant
give

det(e + x) = det
[
P([e + u]−

1
2 )((e+ u) + v)

]
= det(e + u)−1 det(e + u+ v),

det(y) = det
[
P([e + x]

1
2 )u

]
= det(e + x) detu,

detx = det v det(e + u)−1,

⟨ce, y⟩ = c⟨e,P(e + x)1/2u⟩ = c⟨e, (e + x)u⟩,
⟨ce, x+ y) = c⟨e, (e + u)x+ u⟩ = c⟨e, u⟩ + c⟨e,P(e + u)1/2x⟩ = ⟨ce, u⟩ + ⟨ce, v⟩.

Hence we have

f(U,V )(u, v) = C det(e + u)−(r+1) det(e + u+ v)
r+1
2 (detx)a−

r+1
2 det(e + x)−b−a

· (det y)a+b− r+1
2 exp (−c⟨e, x+ y⟩) IΩ+(u)IΩ+(v)(3.7)

= C det(e + u)−a detua+b− r+1
2 e−⟨c,u⟩ det va−

r+1
2 e−⟨c,v⟩IΩ+(u)IΩ+(v).

Remark 3.1. Constant C in (3.7) equals

C =
cr(b+a)

Γr(a+ b)

1

Γr(a)ψ(a, r+1
2 − b, ce)

.

On the other hand, since f(U,V ) is the density of MK(a + b,−b, ce) ⊗W(a, ce),
then

C =
cra

Γr(a)

1

Γr(a+ b)ψ(a+ b, r+1
2 + b, ce)

.

So we obtain
ψ(a+ b, r+1

2 + b, ce)crb = ψ(a, r+1
2 − b, ce).

For r = 1 it is a well known identity, see formula 13.1.29 in [1].

Notice that X and Y in Theorem 3.1 have very special scale parameter:
the identity matrix multiplied by a positive constant c. We will show, in Section
5, that no other parameter is possible there.
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4. Functional equations

The main result of this section is the general solution of the functional
equation

(4.1) A(x) +B(y) = C
(
P(e + x)−1/2y

)
+D

(
P[e + P(e + x)−1/2y]1/2x

)
where A,B,C,D : Ω+ → R are continuous functions. We use techniques first
developed in [4] to solve equation of the form

a(x) + b(y) = c(P(y)x) + d(P(y)(e− x)), y ∈ Ω+, x ∈ D,

where D = {z ∈ Ω+ : e − z ∈ Ω+}. This equation was concerned to prove char-
acterization of Wishart distribution (valued in Ω+). In [4] authors assumed that
densities of considered random variables are strictly positive and twice differen-
tiable. Earlier similar results, but under different assumptions, were obtained by
Olkin and Rubin, [28], Casalis and Letac, [6], Letac and Massam, [19]. Starting
from 2013 methods from [4] were improved by Ko lodziejek, who:

• generalized Lukacs’ Theorem to all non-octonion symmetric cones of rank
greater than 2 and the Lorentz cone assuming only strict positivity and
continuity of densities, [10], [12];

• generalized independence characterization of Beta distribution to the sym-
metric cone setting, [13]. Functional equation, which played a crucial role
there was as follows

a(x) + b(g(e− x)y) = c(y) + d(g(e− y)x),

where x, y ∈ D, a, b, c, d are continuous functions and g is a division algo-
rithm;

• solved the following equation

a(x) + b(y) = c(x+ y) + d
(
x−1 − (x+ y)−1

)
for continuous a, b, c, d defined on the symmetric cone, [14]. As a conse-
quence he got a converse of Matsumoto–Yor theorem for random variables
valued in symmetric cone, i.e. for Wishart and GIG distributions. Earlier
results were obtained only for the cone Ω+ and under stronger assumptions,
[20, 32];

• proved a new characterization of Wishart and matrix–Kummer, [15].

In the proofs in this section we try to adapt the methods developed in
papers cited above in order to solve (4.1). First, we recall Lemma 3.2 from [10].
It is formulated for any symmetric cone, but we will restrict it to our setting, i.e.
the cone Ω+.
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Lemma 4.1 (Additive Cauchy equation). Let f : Ω+ 7→ R be a mea-
surable function such that f(x) + f(y) = f(x+ y) for all (x, y) ∈ Ω2

+. Then there
exists c ∈ Ω such that f(x) = ⟨c, x⟩ for any x ∈ Ω+.

Next, we give solution of slightly modified logarithmic Pexider equation for
functions defined on Ω+ + e := {x ∈ Ω+ : x− e ∈ Ω+}.

Proposition 4.1. Let f1, f2, f3 : Ω+ + e → R be continuous functions
such that

(4.2) f1(x) + f2(y) = f3(P(x1/2)y) for all x, y ∈ Ω+ + e.

Then there exist constants q, γ1, γ2 ∈ R such that for x ∈ Ω+ + e

(4.3)
f1(x) = f0(x) + γ1,
f2(x) = f0(x) + γ2,
f3(x) = f0(x) + γ1 + γ2,

where f0(x) = q log detx.

Proof: Let x = αe, α > 1 and α→ 1+. Given Eq. (4.2), we have

f2(y) = f3(y) − lim
α→1+

f1(αe) = f3(y) − γ1.

Similarly we obtain

f1(x) = f3(x) − lim
α→1+

f1(αe) = f3(x) − γ2.

So Eq. (4.2) is equivalent to

(4.4) f(x) + f(y) = f(P(x1/2)y) for all x, y ∈ Ω+ + e,

where f(x) = f3(x) − γ1 − γ2.

Following the proof of Lemma 3.2 in [10], we define an extension f̄ of f for
all x ∈ Ω+:

(4.5) f̄(x) =

{
f(x), x ∈ Ω+ + e

f(txx) − f(txe), x /∈ Ω+ + e
,

where tx = 2
mini λi

, λi being the ith eigenvalue of x. Also tP(x1/2)y will be denoted
by txy. Note that all eigenvalues of matrix txx are greater than 1 for any x ∈ Ω+,
so txx ∈ Ω+ + e. Now, we will show that

(4.6) f̄(x) + f̄(y) = f̄
(
P
(
x1/2

)
y
)

for all x, y ∈ Ω+.

Case 1: x ∈ Ω+ + e, y /∈ Ω+ + e and P
(
x1/2

)
y ∈ Ω+ + e. Then, by definition

(4.5) and Eq. (4.4)

f̄(x)+f̄(y) = f(x)+f(tyy)−f(tye) = f
(
tyP

(
x1/2

)
y
)
−f(tye) = f̄

(
P
(
x1/2

)
y
)
.
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Case 2: x ∈ Ω+ + e, y /∈ Ω+ + e and P
(
x1/2

)
y /∈ Ω+ + e. These imply that

minimal eigenvalue of P
(
x1/2

)
y is not greater than 1. Then

f̄(x) + f̄(y) = f(x) + f(tyy) − f(tye) =

= f

(
ty
txy

P
(
x1/2

)
ytxy

)
− f(tye) = f

(
P
(
x1/2

)
ytxy

)
−
[
f(tye) − f

(
ty
txy

e

)]
=

= f
(
P
(
x1/2

)
ytxy

)
− f(txye) = f̄

(
P
(
x1/2

)
y
)
.

Here, besides (4.5) and (4.4), we have used the fact that every eigenvalue of
P
(
x1/2

)
y is not less than the product of the smallest eigenvalues of x and y.

Indeed, when λ1 is the smallest eigenvalue of P
(
x1/2

)
y, then from the Min–max

theorem we have

λ1 = min
z∈Rn\{0}

(x1/2yx1/2z, z)

(z, z)
= min

z∈Rn\{0}

(yx1/2z, x1/2z)

(x1/2z, x1/2z)

(x1/2z, x1/2z)

(z, z)
≥

≥ λxλy > λy,

where λx and λy are the smallest eigenvalues of x and y, respectively. The last
inequality follows from the fact, that x ∈ Ω+ + e.

Other cases can be easily verified in a similar way.

Since Eq. (4.6) holds for every x, y ∈ Ω+ then by Lemma 4.2 (Logarithmic
Pexider Equation) from [11]

f̄(x) = q log detx on Ω+.

From definition f(x) = f̄(x) = f0(x) for x ∈ Ω++e and the proof is complete.

We will also need two new lemmas.

Lemma 4.2. Let c ∈ Ω+. Assume that
⟨
c,P(u)v2

⟩
=

⟨
c,P(v)u2

⟩
for all

u, v ∈ Ω+. Then c = λe for some λ > 0.

Proof: For v = c1/2 the equality
⟨
c,P(u)v2

⟩
=

⟨
c,P(v)u2

⟩
results in

⟨c,P(u)c⟩ =
⟨
c,P(c1/2)u2

⟩
⟨c,P(u)c⟩ =

⟨
c2, u2

⟩
⟨e, c · P(u)c⟩ =

⟨
e, c2u2

⟩
0 =

⟨
e, c · P(u)c− c2u2

⟩
.

On the other hand the last equality can be written as

0 =
⟨
e, ucuc− u2c2

⟩
.



12 Bartosz Ko lodziejek and Agnieszka Piliszek

Adding last two equalities we arrive at

0 =
⟨
e, ucuc+ cucu− c2u2 − u2c2

⟩
= −⟨e, (uc− cu)(uc− cu)⟩
= −

⟨
(uc− cu)⊤, (uc− cu)

⟩
.

Thus ||uc− cu|| = 0 and so cu = uc for all u ∈ Ω+. We conclude (see, e.g., proof
of Proposition 5.2 in [20]), that c = λe for some λ > 0.

Lemma 4.3. Let u, z ∈ Ω+, α > 0 and

(4.7) xα =

[
P(u+

1

α
e)−1/2x̃

]2
− e,

where x̃ =
(
P(u+ e/α)1/2(z + u+ e/α)

)1/2
. Then lim

α→0

1

α
xα =z.

Proof: We have

(4.8)

xα
α = 1

α

{[
P(u+ e

α)−1/2x̃
]2 − e

}
= 1

α

[
P(u+ e

α)−1/2P(x̃)(u+ e
α)−1 − e

]
= P(αu+ e)−1/2

[
1
αP(αx̃)(αu+ e)−1 − u− e

α

]
.

Note that

(αu+ e)−1 = e−
(
e +

u−1

α

)−1

= e− α
(
αe + u−1

)−1
.

Indeed,

(αu+ e)
(
e−

(
e + (αu)−1

)−1
)

= αu+ e− αu
(
e + (αu)−1

) (
e + (αu)−1

)−1
= e

and (
e−

(
e + (αu)−1

)−1
)

(αu+ e) = e.

We continue Eq. (4.8):

xα
α = P(αu+ e)−1/2

[
1
αP(αx̃)(e− α

(
αe + u−1

)−1
) − u− e

α

]
= P(αu+ e)−1/2

[
1
α

(
α2x̃2 − e

)
− u− P(αx̃)

(
u−1 + αe

)−1
]
.

Recall that x̃ = 1
α (P(αu+ e)(α(z + u) + e))1/2. Thus

1
α

(
(αx̃)2 − e

)
= 1

α

(
P(αu+ e)1/2(α(z + u)) + αu+ e− e

)
= u+ P(αu+ e)1/2(z + u) → 2u+ z, when α→ 0.

Note that the latter calculation also implies that αx̃ → e when α → 0. With
these observations we may eventually write that

1

α
xα → 2u+ z − u− u = z ∈ Ω+.
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The following Lemma is a simple corollary of Theorem 1 from [29].

Lemma 4.4. Let a, b, c and d be continuous functions on (0,∞). Sup-
pose that

(4.9) a(x) + b(y) = c(y/(1 + x)) + d(x(1 + y/(1 + x)))

then there exist constants a, b, c ∈ R and c1 + c2 = c3 + c4 such that

a(x) = b log x− cx− a log(1 + x) + c1

b(x) = a log x− dx+ c2

c(x) = a log x− dx− b log(1 + x) + c3

d(x) = b log x− cx+ c4

In next proposition we solve matrix–variate version of Eq. (4.9), which is
our first main result. The solution will be used in the proof of the probabilistic
main result of this paper – Theorem 5.1, Section 5.

Proposition 4.2. Let A, B, C, D : Ω+ → R be continuous functions,
such that

(4.10) A(u) +B(v) = C
(
P(e + u)−1/2v

)
+D

(
P[e + P(e + u)−1/2v]1/2u

)
for any u, v ∈ Ω+. Then there exist constants a, b, c1, c2, d ∈ R and λ > 0 such
that

(4.11)

A(x) = a log detx− b log det(e + x) + c1 + λ trx
B(x) = b log detx+ c2 + d+ λ trx
C(x) = b log detx− a log det(e + x) + c2 + λ trx
D(x) = a log detx+ c1 + d+ λ trx

Proof: The proof is divided into three steps.

Step 1 Plugging u = αe, v = βe, α, β > 0 into Eq. (4.10), we have

(4.12) Ã(α) + B̃(β) = C̃

(
β

1 + α

)
+ D̃

(
α

(
1 +

β

1 + α

))
,

where

Ã(α) := A(αe), B̃(α) := B(αe), C̃(α) := C(αe), D̃(α) := D(αe).

Since we assume that functions A, B, C, D are continuous, then we can use
Lemma 4.4 and obtain, inter alia, that

(4.13) Ã(x) = a log x− b log(1 + x) − cx+ c1,

where constants a, b, c, c1 are positive. This observation will be used in Step 3.
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Step 2 Set v = P(e + αũ)1/2x and u = αũ, x, ũ ∈ Ω+, α > 0, in (4.10) to get:

(4.14) A(αũ) +B
(
P(e + αũ)1/2x

)
= C(x) +D

(
αP(e + x)1/2ũ

)
.

When α→ 0 we have

H(e + x) := B(x) − C(x) = lim
α→0

{
D

(
αP(e + x)1/2ũ

)
−A(αũ)

}
.

Note that the limit on the right-hand side does not depend on ũ ∈ Ω+. Therefore,
for ũ = P(e + x)−1/2(e + y), y ∈ Ω+ we get:

H(e + x) = lim
α→0

{
D (α(e + y)) −A

(
αP(e + x)−1/2(e + y)

)}
= lim

α→0

{
D (α(e + y)) −A(αe) +A(αe) −A

(
αP(e + x)−1/2(e + y)

)}
= H(e + y) + lim

α→0

{
A(αe) −A

(
αP(e + x)−1/2(e + y)

)}
.

Denoting

G
(
P(e + x)−1/2(e + y)

)
= − lim

α→0

{
A(αe) −A

(
αP(e + x)−1/2(e + y)

)}
,

we have:

H(e + y) = H(e + x) +G
(
P (e + x)−1/2(e + y)

)
for any x, y ∈ Ω+,

which by Proposition 4.1 gives

B(y) − C(y) = H(e + y) = a log det(e + y) + d1

for any y ∈ Ω+, where a, d1 ∈ R.

Notice that Eq. (4.10) can be equivalently written as

A
(
P(e + u)−1/2v

)
+B

(
P[e + P(e + u)−1/2v]1/2u

)
= C(u) +D(v).

Thus, if we repeat the procedure from Step 2 starting with this equation instead
of (4.10), then we get

D(y) −A(y) = b log det(e + y) + d2, b, d2 ∈ R.

From the solution of one–dimensional Eq. (4.12) it follows that d1 = d2 = d ∈ R.

Step 3. The results of Step 2 allow us to define functions f, g : Ω+ 7→ R such
that for x ∈ Ω+

(4.15)

A(x) = a log detx− b log det(e + x) + c1 + f(x),
B(x) = b log detx+ c2 + d+ g(x),
C(x) = b log detx− a log det(e + x) + c2 + g(x),
D(x) = a log detx+ c1 + d+ f(x),
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and due to (4.14), f and g satisfy

(4.16) f(x) + g
(
P(e + x)1/2y

)
= g(y) + f

(
P(e + y)1/2x

)
.

Let x = αzα, where α > 0, zα ∈ Ω+ and zα converges to z ∈ Ω+ when α tends
to 0. Also set y = yα = βz−1

α − e where β > 0 is large enough for yα to be in
Ω+ for any α > 0 and also for the limit limα→0 yα ∈ Ω+ (which is possible since
zα → z ∈ Ω+). Notice that P(e + yα)1/2zα = βe. These observations and Eq.
(4.16) allow us to write

0 = lim
α→0

{f(αzα) − f(αβe)} .

From Step 1, Eq. (4.13), we know that limα→0 f(αβe) = 0. Then

(4.17) lim
α→0

f(αzα) = 0

for any zα ∈ Ω+ such that zα → z ∈ Ω+.

We will show that f is additive. Firstly, we set y = u + e/α, u ∈ Ω+,
and x = xα defined in (4.7). Note that z used in definition (4.7) is an arbitrary
element from Ω+. From Lemma 4.3 we know that xα/α converges to z ∈ Ω+,
when α→ 0. Thus, for α small enough xα is inside the cone Ω+. Given (4.17), we

also have f(xα) = f(αxα/α)
α→0→ 0. Note that P(e+xα)

1
2 (u+e/α) = z+u+e/α.

We rewrite Eq. (4.16) with those special x and y. After taking the limit as α→ 0
we obtain

(4.18) f(z) = lim
α→0

{
g

(
z + u+

1

α
e

)
− g

(
u+

1

α
e

)}

On the other hand, if we plug x = αu and y = e/α in Eq. (4.16) and take
the limit as α→ 0, we obtain limα→0 {g(u+ e/α) − g(e/α)} = f(u). Combining
this result with Eq. (4.18) we have

f(u) + f(z) = limα→0

{
g
(
u+ 1

αe
)
− g

(
1
αe

)
+ g

(
z + u+ 1

αe
)
− g

(
u+ 1

αe
)}

= limα→0

{
g
(
z + u+ 1

αe
)
− g

(
1
αe

)}
= f(z + u)

Note that this equation, f(u)+f(z) = f(u+z), holds for all u, z ∈ Ω+. By Lemma
4.1 we conclude that f(x) = ⟨c, x⟩ where c ∈ Ω+. Similarly, due to symmetry
in (4.16), we show that g(x) = ⟨c̃, x⟩. Eq. (4.16) with x = αu, y = e/α implies
c̃ = c.

The last step of the proof is to show that c = λe for real and positive λ. We
will use Lemma 4.2 to do that. For f and g identified above, Eq. (4.16) assumes
the form ⟨

c, α2P(e + x)1/2(e + y)
⟩

=
⟨
c, α2P(e + y)1/2(e + x)

⟩
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for any α > 0. Note that for any u, v ∈ Ω+ there exist α > 0, x, y ∈ Ω+ such
that α(e + x) = u2 and α(e + y) = v2. Thus, we can use Lemma 4.2 to conclude
that c = λe, where λ > 0. Consequently, we have

(4.19)

A(x) = a log detx− b log det(e + x) + c1 + λ trx,
B(x) = b log detx+ c2 + d+ λ trx,
C(x) = b log detx− a log det(e + x) + c2 + λ trx,
D(x) = a log detx+ c1 + d+ λ trx.

5. Characterization of matrix–Kummer and Wishart distributions

In this section we prove the converse to the independence property from
Theorem 3.1, that is a new characterization of the martix–Kummer and the
Wishart distributions. Similarly to the one–dimensional case considered in [29],
we need to impose some regularity conditions on densities.

Theorem 5.1. Let X and Y be independent random variables valued
in Ω+ with positive and continuous densities. Assume that random matrices

U = P[(e +X)−1/2]Y and V = P[(e + U)1/2]X

are also independent.

Then there exist a > (r − 1)/2, b > (r − 1)/2 − a and λ > 0 such that
X ∼ MK(a, b, λe) and Y ∼ W(a+ b, λe).

Proof: Recall that

T (x, y) =

(
P
[
(e + x)−

1
2

]
y, P

[(
e + P

[
(e + x)−

1
2

]
y
) 1

2

]
x

)
.

Then (U, V ) = T (X,Y ) and (X,Y ) = T (U, V ).

Independence of random variables together with continuity of their densities
imply

(5.1) fU (u)fV (v) = |J(u, v)|fX(x)fY (y) for all u, v ∈ Ω+,

where (x, y) = T (u, v) and the Jacobian J of T−1 is given in Proposition 3.1. Tak-
ing logarithms of both sides in (5.1) and defining functions A,B,C,D : Ω+ → R
as

A(u) = log fU (u) + r+1
2 log detu,

B(u) = log fV (u) + r+1
2 log detu,

C(u) = log fX(u) + r+1
2 log detu,

D(u) = log fY (u) + r+1
2 log detu,
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we can rewrite Eq. (5.1) in the following way
(5.2)

A(u)+B(v) = C
(
P(e + u)−1/2v

)
+D

(
P
(
e + P(e + u)−1/2v

)1/2
u

)
, u, v ∈ Ω+.

From Proposition 4.2 it follows

(5.3)

A(x) = a log detx− b log det(e + x) + c1 + λ trx,
B(x) = b log detx+ c2 + d+ λ trx,
C(x) = b log detx− a log det(e + x) + c2 + λ trx,
D(x) = a log detx+ c1 + d+ λ trx.

The latter and the fact, that functions A, B, C and D represent logarithms of
densities of random variables, imply X ∼ MK(a, b, λe) and Y ∼ W(a+ b, λe).

6. Concluding remarks

Recently P. Vallois indicated 1 that one can define a transformation which
generalizes T0 for random matrices, is different from (3.1) and also preserves
independence of Wishart and matrix-Kummer random matrices. Namely, let

T (x, y) =
(
P(e + x+ y)(e + x)−1 − e, x+ y −

[
P(e + x+ y)(e + x)−1 − e

])
.

Vallois says, and this can be checked in standard way, that if X ∼ MK(a, b,Σ)
and Y ∼ W(a+ b,Σ) are independent, then (U, V ) = T (X,Y ) are also indepen-
dent. Note that since U + V = X + Y here, then Σ can be any positive definite
matrix, which was not true in our case. If the converse theorem holds, remains
an open question.

We hope that the probabilistic results of this paper can help to state and
prove an analogous property in free (non-commutative) probability. Let us recall
that in the case of the Matsumoto-Yor property, its analogue in free probability
was accomplished through an appropriate matrix independence property, [31].
This problem is currently being under study.

In [29] authors formulated multivariate characterization of a product of
p−1 Kummer random variables and one Gamma random variable, p ≥ 2. There,
Kummer is a marginal distribution of a certain p-dimensional distribution, called
tree-Kummer distribution in the paper, see Section 3 in [29]. For instance, when
p = 2, then this density is of the form

f(x1, x2) ∝ xa1−1
1 xa2−1

2 exp{−c(x1 + x2 + x1x2)I(0,∞)2(x1, x2)}.
1During his talk at 10th International Conference of the ERCIM WG on Computational and

Methodological Statistics (CMStatistics 2017), 16-18.12.2017.
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Similarly, matrix-Kummer distribution appears naturally as a marginal distribu-
tion of the following generalization of bi-Wishart distribution

f(X,Y )(x, y) ∝ (detx)p−
r+1
2 (det y)q−

r+1
2 exp(−⟨c, x+y+xy⟩)IΩ+×Ω+(x, y), c > 0.

Then the conditional distribution of X given Y is Wishart W(p, c(e + y)), while
its marginal distribution is matrix-Kummer MK(p, q − p, c). Also a question
arises if a multivariate version of our independence characterization holds in a
matrix setting?
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