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a b s t r a c t

The paper develops a rather unexpected parallel to the multivariate Matsumoto–Yor (MY)
property on trees considered in Massam and Wesołowski (2004). The parallel concerns a
multivariate version of the Kummer distribution, which is generated by a tree. Given a tree
of size p, we direct it by choosing a vertex, say r , as a root. With such a directed tree we
associate a map Φr . For a random vector S having a p-variate tree-Kummer distribution
and any root r , we prove that Φr (S) has independent components. Moreover, we show
that if S is a random vector in (0,∞)p and for any leaf r of the tree the components
of Φr (S) are independent, then one of these components has a Gamma distribution and
the remaining p − 1 components have Kummer distributions. Our point of departure is a
relatively simple independence property due to Hamza and Vallois (2016). It states that
if X and Y are independent random variables having Kummer and Gamma distributions
(with suitably related parameters) and T : (0,∞)2 → (0,∞)2 is the involution defined by
T (x, y) = (y/(1+x), x+xy/(1+x)), then the random vector T (X, Y ) has also independent
components with Kummer and gamma distributions. By a method inspired by a proof of a
similar result for the MY property, we show that this independence property characterizes
the gamma and Kummer laws.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

Let X and Y be independent random variables. There are several well-known cases where U = φ(X, Y ) and V = ψ(X, Y )
are also independent. A number of distributions have actually been characterized this way. Classical results along these lines
include Bernstein’s characterization [4] of the Gaussian distribution through independence of U = X − Y and V = X + Y ,
and Lukacs’ characterization [18] of the Gamma distribution through independence of U = X/Y and V = X + Y .

At the end of the 1990s, a new result of this kind, called the Matsumoto–Yor (MY) property was discovered; see, e.g.,
[24, p. 43]. It states that if X has a generalized inverse Gaussian (GIG) distribution and Y is Gamma, the random variables
U = 1/(X + Y ) and V = 1/X − 1/(X + Y ) are independent. It arose in studies [22,23] of the conditional structure of some
functionals of the geometric Brownian motion. See [17] for a related characterization of the GIG and Gamma distributions
through the independence of X and Y and of U and V .

The MY property is also strongly rooted in classical multivariate analysis. Its matrix-variate version appears naturally
in the conditional structure of Wishart matrices; see, e.g., [20] as well as [6,9]. A higher-dimensional version of the MY
property and related characterization was studied in [19], where a Gamma-type multivariate distribution was obtained by
connecting its density shape to a tree. Through a suitable transformation related to directed trees, a random vector having
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the latter distribution was mapped to independent components with GIG and Gamma distributions. This approach also led
to a characterization of the product of GIG and Gamma distributions. In the special case of a chain with two vertices these
results are equivalent to the characterization through the original MY property.

The MY property attracted a lot of attention in the last 15 years. In particular, [15] tried to identify all possible functions
f and distributions of independent X and Y such that f (X + Y ) and f (X)− f (X + Y ) are also independent. The MY property
corresponds to the case f (x) = 1/x. Another important case identified in that paper occurs when f (x) = ln(1 + 1/x). Thus
if X and Y are independent with Kummer and Gamma distributions, then

U = X + Y and V =
1 + 1/(X + Y )

1 + 1/X
are independent Kummer and Beta distributed random variables, respectively.

Characterizations by independence of X and Y and of U and V were obtained in [14,15]. To derive their results, however,
the authors needed to impose technical conditions of differentiability or local integrability of logarithms of strictly posi-
tive densities. Recently a regression characterization under natural integrability condition was given in [27] without any
assumptions on the densities.

In the present paper we are interested in an independence property discovered recently in [10]. It states that if X and Y
are independent random variables with Kummer and Gamma distributions, then

U = Y/(1 + X) and V = X
1 + X + Y

1 + X
are also independent and have Kummer and Gamma distributions, respectively. In studying this property, we will exploit
several of the ideas described above. In particular, we will give a characterization of the Gamma and Kummer distributions
through the independence of the components in the pairs (X, Y ) and (U, V ). In the proof, inspired from [26], we will use the
method of functional equations for densities assuming local integrability of their logarithms. This is reported in Section 2.

Next, we will introduce and study multivariate versions of the property described above. Our approach parallels the one
adopted in [19] for a multivariate version of the MY property. We will first define a p-variate tree-Kummer distribution
from an undirected tree T of size p. For each vertex r of T , we will define the directed tree by choosing r as its root. To each
such directed tree, we will associate a transformation Φr : (0,∞)p → (0,∞)p and show that if a random vector S has a
tree-Kummer distribution, thenΦr(S) has independent components with Gamma and Kummer distributions. This analogue
of Theorem 3.1 in [19] is given in Section 3.

In Section 4 we will derive a characterization of products of Gamma and Kummer distributions (and thus of the
tree-Kummer distribution) assuming that for any leaf r of the tree T , the components ofΦr(S) are independent. This result
parallels Theorem 4.1 in [19]. Finally, Section 5 contains some concluding remarks.

2. Kummer and gamma characterization

The Kummer distribution K(α, β, γ )with parameters α, γ > 0, β ∈ R has density

f (x) ∝
xα−1

(1 + x)α+β
e−γ x 1(0,∞)(x).

If β > 0 it is a natural exponential family generated by the second kind Beta distribution. More information on the Kummer
distribution, its properties and applications can be found in [2,1,7,8,12,15,16] and in the monograph [3].

By the Gamma distribution G(α, γ )with parameters α, γ > 0, we mean the distribution whose density is given by

g(x) ∝ xα−1e−γ x1(0,∞)(x).
Consider two independent random variables X and Y with respective distributions X ∼ K(a, b − a, c) and Y ∼ G(b, c),

where a, b, c > 0. Define a bijection T : (0,∞)2 → (0, ∞)2 by

T (x, y) =


y

1 + x
, x

1 +

y
1 + x


.

Let (U, V ) = T (X, Y ). It has been observed in [10] that U and V are independent and U ∼ K(b, a − b, c), V ∼ G(a, c).
Our objective in this section is to give a converse of this result, that is a characterization of the Kummer and the Gamma
distribution through the independence property mentioned above. Unfortunately, as in the case of the characterization of
the Kummer and Gamma distributions obtained by [14,15], we also need to impose some regularity conditions on densities.

Theorem 1. Let X and Y be two independent positive random variables with positive and continuously differentiable densities
on (0,∞). Suppose that

U =
Y

1 + X
, V = X


1 +

Y
1 + X


,

are independent. Then there exist constants a, b, c > 0, such that X ∼ K(a, b − a, c), Y ∼ G(b, c) or, equivalently,
U ∼ K(b, a − b, c) and V ∼ G(a, c).
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Proof. Note that T is an involution. Given that (U, V ) = T (X, Y ), we also have (X, Y ) = T (U, V ). Given that the random
vectors (U, V ) and (X, Y ) have independent components with continuous densities pU , pV , pX and pY respectively, the
independence property can be rewritten as

pU(u)pV (v) = |J(u, v)|pX


v

1 + u


pY


u

1 +

v

1 + u


(1)

for all x, y, u, v > 0, where J is the Jacobian. Furthermore, given that

J(u, v) =
1

1 + u


1 +

v

1 + u


and the densities are strictly positive it follows that Eq. (1) can alternatively be written as the functional equation

A(u)+ B(v) = C


v

1 + u


+ D


u

1 +

v

1 + u


(2)

where

A(x) = ln pU(x)+ ln x, B(x) = ln pV (x)+ ln x,
C(x) = ln pX (x)+ ln x, D(x) = ln pY (x)+ ln x.

Differentiating both sides of (2) with respect to u gives

A′(u) = −
v

(1 + u)2
C ′


v

1 + u


+ D′


u

1 +

v

1 + u


1 +

v

(1 + u)2


.

Now, we insert (x, y) = T (u, v) in the above equation and get

C ′ (x) x(1 + x) = D′ (y) {1 + x + y + x(1 + x)} − A′


y

1 + x


(1 + x + y). (3)

Note that the right-hand side of Eq. (3) converges to {D′(y)−A′(y)}(1+ y) as x → 0. Hence, the left-hand side of Eq. (3) also
has a limit, say−C0, when x → 0+ and C0 does not depend on y since there is no y on the left-hand side of Eq. (3). Therefore,

A′(y) =
C0

1 + y
+ D′(y).

We insert it back into Eq. (3) to arrive at

C0

x
+ D′


y

1 + x


1 + x + y

xy
y

1 + x
= −C ′(x)+ D′(y)


1 + x + y
x(1 + x)

+ 1

. (4)

On the other hand with u = y and v = x(1 + y), Eq. (2) reads

A(y)+ B{x(1 + y)} = C(x)+ D{y(1 + x)}. (5)

Differentiation with respect to x yields

B′
{x(1 + y)}(1 + y)(1 + x)− C ′(x)(1 + x) = D′

{y(1 + x)}y(1 + x). (6)

Note that the left-hand side above has a finite limit when y → 0+. Consequently, denoting z = y(1 + x) we conclude that
limz→0+ D′(z)z =: b exists and is finite. Therefore the left-hand side of Eq. (4) is finite when x → ∞. By comparing it with
the right-hand side of (4) we conclude that − limx→∞ C ′(x) =: c is finite. Therefore, letting x → ∞ in Eq. (4), we get

b
y

= c + D′(y).

In view of the definition of D, we conclude that pY (y) ∝ yb−1e−cy and b, c > 0, i.e., Y ∼ G(b, c).
Due to the fact that T is an involution the functional equation (2) is symmetric in (A, B) and (C,D). Consequently, there

exists a constant a such that B is of the form

B′(x) =
a
x

− d.

In order to find C let us note that Eq. (6) yields

B′(x)(1 + x)− C ′(x)(1 + x) = lim
y→0

D′(y(1 + x))y(1 + x) = b
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and thus

C ′(x) =
a
x

− d −
b

1 + x
.

Finally, we get

C(x) = a ln x − dx − b ln(1 + x)+ c0.

Thus

pX (x) ∝
xa−1

(1 + x)b
e−dx1(0,∞)(x)

and necessarily, a > 0.
What is left to do is to determine the relationship between the parameters. Referring again to the definitions of A, B, C , D

and to the original Eq. (1), we have

pU(u) pV (v) =
1 +

v
1+u

1 + u
pX


v

1 + u


pY


u

1 +

v

1 + u


∝

1 + u + v

(1 + u)2


v

1 + u

a−1 1 + u + v

1 + u

−b

e−d v
1+u


u
1 + u + v

1 + u

b−1

e−cu 1+u+v
1+u

= (1 + u)−aub−1e−cuva−1e−cve−
v

1+u (d−c).

Given that the function on the right-hand side has to be a product of a function of u and a function of v, it follows that
d = c . Thus, the result follows. �

To weaken the smoothness assumptions imposed on densities in Theorem 1, we will use local integrability instead
of continuous differentiability, as proposed in [26] for the MY-type functional equation, and then applied in [14] in the
characterization of the Kummer and Gamma distributions.

Lemma 1. It is sufficient to assume that logarithms of all densities are locally integrable in Theorem 1.

Proof. Given that the other assumptions of Theorem 1 are satisfied, we conclude that Eq. (5) holds for almost all (x, y) ∈

(0,∞)2. Given also that the functions A, B, C , D are locally integrable we can take any 0 < x0 < x1 < ∞ and integrate both
sides of (5) with respect to x from x0 to x1. Then x1

x0
B{x(1 + y)}dx −

 x1

x0
D{y(1 + x)} dx =

 x1

x0
C(x) dx − A(y)(x0 − x1).

We substitute s = x(1+ y) > 0 in the first integral and t = y(1+ x) > 0 in the second integral on the left-hand side above.
Consequently, for almost all y ∈ (0,∞) x1(1+y)

x0(1+y)

B(s)
1 + y

ds −

 (1+x1)y

(1+x0)y

D(t)
y

dt =

 x1

x0
C(x)dx − A(y)(x0 − x1). (7)

The left-hand side of Eq. (7) is continuous in y ∈ (0,∞). Hence, function A can be extended to a continuous function Ã on
(0,∞).
Similarly, integrating (5) with respect to y from y0 to y1, 0 < y0 < y1 < ∞, we get (1+y1)x

(1+y0)x

B(s)
x

ds −

 y1(1+x)

y0(1+x)

D(t)
1 + x

dt = (y1 − y0)C(x)−

 y1

y0
A(y)dy (8)

for almost all x > 0. Therefore, C has also a continuous extension C̃ which is a function on (0,∞).
For any x, y > 0 let u = x(1 + y) and v = y(1 + x). Then

x =
1
2


(1 + v − u)2 + 4u − (1 + v − u)


> 0,

y =
1
2


(1 + u − v)2 + 4v − (1 + u − v)


> 0.

(9)

Plugging these values of x and y into Eq. (5) with Ã = A and C̃ = C , we get

B(u)− D(v) = C̃

1
2


(1 + v − u)2 + 4u − (1 + v − u)


+

− Ã

1
2


(1 + u − v)2 + 4v − (1 + u − v)


. (10)
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The right-hand side of Eq. (10) can be extended continuously for u ∈ (0,∞), which gives a continuous extension B̃ of B on
the left-hand side. Similarly, we can extend D to D̃, which is continuous on (0,∞).

Consequently, we can assume that Eq. (5) is satisfied for all (x, y) ∈ (0,∞)2 and that the functions A, B, C and D
appearing in (5) are continuous. Now, repeating step by step the above reasoning, we see that A, B, C and Dmay be assumed
continuously differentiable, i.e., all the assumptions of Theorem 1 are satisfied. �

3. Independence properties of tree-Kummer distribution

3.1. A symmetrization of the independence property

The first step in approaching the tree-version of the MY property was to consider a symmetrized version of the classical
MY property; see [19], pp. 686–687. Similarly here we start with a derivation of a symmetric version of the property of
independence of Kummer and Gamma distributions from [10].

Consider independent random variables X ∼ K(a, b − a, c) and Y ∼ G(b, c) with parameters a, b, c > 0, and
(U, V ) = T (X, Y ). Define a random vector

(S1, S2) =


X,

Y
1 + X


=


V

1 + U
,U

.

Then (X, Y ) = (S1, S2(1 + S1)) and (V ,U) = (S1(1 + S2), S2). For the density p of (S1, S2)we get

p(s1, s2) = |Jψ−1(s1, s2)|pX (x(s1, s2)) pY (y(s1, s2))

withψ(x, y) = (x, y/(1 + x)) being a bijection on (0,∞)2. Therefore,ψ−1(s1, s2) = (x(s1, s2), y(s1, s2)) = (s1, (1+ s1)s2)
and thus

p(s1, s2) ∝ sa−1
1 sb−1

2 e−c(s1+s2+s1s2)1(0,∞)2(s1, s2).

We will consider a more general distribution of this type by introducing three positive parameters c1, c2 and c1,2 and
writing

p(s1, s2) ∝ sa1−1
1 sa2−1

2 e−(c1s1+c2s2+c1,2s1s2)1(0,∞)2(s1, s2). (11)

This is the analogue of the density f in [19], p. 687.
Let us also define two bijective mappings:Φr : (0,∞)2 → (0,∞)2, r ∈ {1, 2}, by

Φ1(s1, s2) = (s1,(1), s2,(1)) =


s1


1 +

c1,2
c1

s2


, s2


=


s1


1 +

c1,2
c1

s2,(1)


, s2


.

Φ2(s1, s2) = (s1,(2), s2,(2)) =


s1, s2


1 +

c1,2
c2

s1


=


s1, s2


1 +

c1,2
c2

s1,(2)


.

They are analogues of the mappings ψ1 and ψ2 in [19], p. 686.
Assume that a random vector (S1, S2) has the density p as in Eq. (11). Define (X1,(1), X2,(1)) = Φ1(S1, S2) and

(X1,(2), X2,(2)) = Φ2(S1, S2). Then standard computations involving density transformation yield
c1,2
c1

X1,(1),
c1,2
c2

X2,(1)


∼ G(a1, c ′)⊗ K(a2, a1 − a2, c ′) (12)

and 
c1,2
c2

X1,(2),
c1,2
c2

X2,(2)


∼ K(a1, a2 − a1, c ′)⊗ G(a2, c ′), (13)

where c ′
= c1c2/c1,2 and µ⊗ ν denotes a distribution which is a product of distributions µ and ν.

Our aim in this section is to extend the above construction to any dimension. As in [19] the language of undirected and
directed trees will be very helpful in this context. Similarly to [19], Section 2, we need to provide background information
regarding the tree language and certain facts about transformations.
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3.2. Trees and transformations

Let us recall that a graph G = (V , E), where V is the set of nodes and E ⊆ {{u, v} : u, v ∈ V , u ≠ v} is the set
of edges, is called a tree, if it is connected and acyclic. The symbol degG(i) stands for the degree of vertex i ∈ V , i.e.,
degG(i) = |{ℓ : {ℓ, i} ∈ E}|, where |B| denotes a number of elements in a finite set B. A vertex of degree 1 is a leaf. We define
a subtree S of a tree T = (V , E) as the graph S = (V (S), E(S)), where V (S) ⊆ V and E(S) = {{i, j} ∈ E : i, j ∈ V (S)}. If S is a
subtree of T we write S ⊆ T .

Let T = (V , E) be a tree of size p ≥ 2. For a fixed root r ∈ V , we direct T from the root towards leaves and denote such
a directed tree by Tr . Having the tree directed, we can say that node i is a child of vertex j (or j is a parent of i) if and only if
{i, j} ∈ E and the tree is directed from j to i (note that every node, unless it is a leaf, has at least one child and every node but
the root has exactly one parent). The set of all children of i in Tr will be denoted by Cr(i) and the parent of vertex i by pr(i).
We say that the undirected tree T is the skeleton of Tr .

Remark 1. Note that when drawing parallels between the result presented here and those in [19], one has to keep in mind
that there, contrary to the tradition in the graph theory, the tree is directed in the opposite way: from leaves towards a
chosen root. Therefore, the parents and children notions here and in [19] have to be swapped.

For any r ∈ V (and hence Tr ) and fixed set of parameters ci,j > 0, i, j ∈ V (ci,i =: ci) we define a transformation
ΦT

r : Rp
+ → Rp

+ by

ΦT
r (si, i ∈ V ) = (si,(r), i ∈ V ), (14)

where

si,(r) = si


j∈Cr (i)


1 +

ci,j
ci

sj,(r)


, (15)

where by convention an empty product is equal to 1, i.e., if V ∋ i ≠ r is a leaf then si,(r) = si. The definition (15) is inverse
recursive with a starting point being any vertex with maximal distance from the root r . Usually we will writeΦr instead of
ΦT

r . Compare these mappings with the mappings ψr , r ∈ V , defined in (2.5) and (2.6) of [19].
It is easy to see that Φr is a bijection for any r ∈ V . The transformation Φ−1

r : Rp
+ → Rp

+ is given by Φ−1
r (yj, j ∈ V ) =

(si, i ∈ V ), where

si =
yi

j∈Cr (i)


1 +

ci,j
ci
yj
 , i ∈ V ,

and again the product over the empty set is considered to be equal to 1.
First we compute the Jacobian Jr ofΦ−1

r . Note, that if we enumerate the nodes in such away that each child has a number
greater than its parents, the Jacobi matrix is upper triangular. Thus, we only need to find the elements on its diagonal which
are partial derivatives

∂si
∂yi

=

 
j∈Cr (i)


1 +

ci,j
ci

yj

−1

, i ∈ V .

Considering that every node but the root has exactly one parent, it appears in exactly one partial derivative. Hence, we have

Jr(yi, i ∈ V ) =

 
i∈V\{r}


1 +

cpr (i),i

cpr (i)
yi

−1

. (16)

We will also need the identity given in the following proposition.

Proposition 1. For any r ∈ V if (si,(r))i∈V and (si)i∈V are related by (15) then
m∈V

cmsm,(r) =


S⊆T


i∈V (S)

si
cdegS (i)−1
i


{j,k}∈E(S)

cj,k. (17)

Proof. Fix a root r ∈ V in the tree T . Let Sm
r denote the family of directed subtrees of Tr with the rootm ∈ V . By S(r,m)we

denote the family of undirected trees which are skeletons (undirected trees) of (directed) trees from Sm
r .

We will show, using mathematical induction, that for everym ∈ V
S∈S(r,m)


{j,k}∈E(S)

cj,k


i∈V (S)

si
cdegS (i)−1
i

= cmsm,(r). (18)
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Fig. 1. Tree Tr with one of possible S ∈ S(r,m) colored gray.

Given that
S⊆T


i∈V (S)

si
cdegS (i)−1
i


{j,k}∈E(S)

cj,k =


m∈V


S∈S(r,m)


{j,k}∈E(S)

cj,k


i∈V (S)

si
cdegS (i)−1
i

,

the identity (17) follows from Eq. (18).
In order to prove (18) we will rely on the definition (15). The proof will be by induction with respect to the distance of

the vertexm from its farthest descendant.
We first consider the case Cr(m) = ∅. Then the left-hand side of (18) equals smcm as the only element of S(r,m) is a

trivial tree ({m},∅). In this case sm,(r) = sm due to (15), and thus the identity (18) follows.
Now we need to consider the case Cr(m) ≠ ∅ assuming that for all n ∈ Cr(m) the identity (18) holds, i.e.,

S∈S(r,n)


{j,k}∈E(S)

cj,k


i∈V (S)

si
cdegS (i)−1
i

= cnsn,(r). (19)

Note that any element of S(r,m) is a union of subtrees from S(r, n), n ∈ Cr(m), extended by attaching to such a union
the vertexmwith suitably chosen edges (see Fig. 1 for illustration). For any B ⊂ Cr(m) (ordered by numbers of vertices) we
denote S(r, B) = ×w∈B S(r, w), a Cartesian product of families of subtrees. Denote also SB = (Sw)w∈B ∈ S(r, B) and note
that it is a vector of subtrees. Using this notation we can write the family S(r,m) as follows

S(r,m) =


V (SB) ∪ {m}, E(SB) ∪


w∈B

{{m, w}}


, SB ∈ S(r, B), B ⊂ Cr(m)


,

where

V (SB) =


w∈B

V (Sw) and E(SB) =


w∈B

E(Sw).

In particular, the element in the above family associated to B = ∅ ⊂ Cr(m) is the trivial tree ({m},∅). Then
S∈S(r,m)


{j,k}∈E(S)

cj,k


i∈V (S)

si
cdegS (i)−1
i

= cmsm +


∅≠B⊂Cr (m)


SB∈S(r,B)


{j,k}∈ E(SB(m))

cj,k


i∈V (SB(m))

si

c
degSB(m)(i)−1
i

, (20)

where

SB(m) = (V (SB(m)), E(SB(m))) =


V (SB) ∪ {m}, E(SB) ∪


w∈B

{{m, w}}


.

Therefore,

degSB(m)(i) =


|B| for i = m,
degSw (i) for i ∈ V (Sw) \ {w}, w ∈ B,
degSw (w)+ 1 for i = w, w ∈ B.

Consequently, the double sum in (20) can be written as

cmsm


∅≠B⊂Cr (m)

1

c |B|
m


w∈B

cm,w
cw

 
SB∈S(r,B)


w∈B

 
{j,k}∈E(Sw)

cj,k


i∈V (Sw)

si

c
degSw (i)−1
i



= cmsm


∅≠B⊂Cr (m)

1

c |B|
m


w∈B

cm,w
cw

 
w∈B

 
Sw∈S(r,w)


{j,k}∈ E(Sw)

cj,k


i∈V (Sw)

si

c
degSw (i)−1
i



= cmsm


∅≠B⊂Cr (m)

1

c |B|
m


w∈B

cm,w sw,(r),
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where the last equality follows form the induction assumption (19) applied to every sum under the product

w∈B in the

previous expression. Summing up we have
S∈S(r,m)


{j,k}∈E(S)

cj,k


i∈V (S)

si

c
d(r,m)(i)
i

= cmsm


1 +


∅≠B⊂Cr (m)

1

c |B|
m


w∈B

cm,w sw,(r)



= cmsm


w∈ Cr (m)


1 +

cm,w sw,(r)
cm


= cmsm,(r),

where the last equation is a consequence of (15). �

Note that the right-hand side of (17) does not depend on r , i.e., on the direction of the tree. Therefore the following result
is an immediate consequence of Proposition 1.

Corollary 1. For any r1, r2 ∈ V
i∈V

cisi,(r1) =


i∈V

cisi,(r2).

3.3. Independence property of tree-Kummer distribution

Let T = (V , E), as above, be a tree of size p. We define the set CT as the set of all symmetric matrices C = [ci,j]i,j∈V
such that ci,j > 0, when {i, j} ∈ E, ci,i = ci > 0 and ci,j = 0 otherwise. We say that a random vector X has tree-Kummer
distribution, TK(a, C), where a = (ai, i ∈ V ) ∈ Rp

+, and C ∈ CT if its density is of the form

f (x) ∝


i∈V

xai−1
i exp


−


S⊆T

C(S)


{j,k}∈E(S)

cj,k


1(0;∞)p(x),

where

C(S) =


i∈V (S)

xi
cdegS (i)−1
i

.

As it will be seen later, if v ∈ V is a leaf then the law of Xv is Kummer. On the other hand for a degenerate tree of size 1,
the TK distribution is just a Gamma distribution. This distribution is an analogue of the W c

G distribution introduced in [19],
Section 3, which is also Gamma for the degenerate tree of size 1, and if X is a random vector with W c

G distribution, then for
any leaf v ∈ V the random variable Xv has a GIG distribution.

Note that in the case of the tree T which is a 1–2, chain the above density agrees with (11). Thus, as observed in
Section 3.1, the transformationsΦ1 andΦ2 applied to a bivariate random vector with such density produce random vectors
with independent Kummer and Gamma components. We will extend this observation to a tree-Kummer law generated by
any tree. It will lead to a multivariate version of the independence property from [10].

Theorem 2. Let T = (V , E) be a tree, |V | = p ≥ 2, and S = (Si, i ∈ V ) be a random vector following the tree-Kummer TK(a, C)
distribution with a ∈ Rp

+, C ∈ CT . Denote Xr = Φr(K), whereΦr is the transformation defined in (14) and (15) with parameters
ci,j and ci, where i, j, r ∈ V .

Then, for any r ∈ V the components of the random vector Xr = (Xi,(r), i ∈ V ) are independent. Moreover,

Xr,(r) ∼ G(ar , cr) and
cpr (i),i

cpr (i)
Xi,(r) ∼ K


ai, apr (i) − ai,

cpr (i) ci
cpr (i),i


, i ∈ V \ {r}.

This theorem may be viewed as an analogue of Theorem 3.1 in [19].

Proof. As for any r ∈ V the map Φr is a diffeomorphism from (0,∞)p onto (0,∞)p, the random vector Xr has a density fr
of the form

fr(xi, i ∈ V ) = |Jr(xi, i ∈ V )|fT

Φ−1

r (xi, i ∈ V )

1(0;∞)p(x).

Proposition 1 implies that for every vertex r ∈ V ,
S⊆T


i∈V (S)

xi
cdegS (i)−1
i


{l,j}∈E(S)

cl,j =


i∈V

ciΦ(i)
r (x),

where byΦ(i)
r (x)we mean xi,(r) as defined in Eq. (15), soΦr(·) = (Φ

(i)
r (·), i ∈ V ).
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Thus, for xi > 0 and i ∈ V

fT {Φ−1
r (xi, i ∈ V )} ∝


i∈V


Φ(−1)

r

(i)
(x)
ai−1

exp


−


i∈V

ciΦ(i)
r {Φ−1

r (x)}



=


i∈V

 xi
j∈Cr (i)


1 +

ci,j
ci
xj



ai−1

exp


−


i∈V

cixi


.

To compute the denominator of the above expression, note that for any set of numbers (αi,j, {i, j} ∈ E),
i∈V


j∈Cr (i)

αi,j =


i∈V\{r}

αpr (i),i.

Therefore,

fT {Φ−1
r (xi, i ∈ V )} ∝ xar−1

r e−cr xr


i∈V\{r}

ecixixai−1
i


1 +

cpr (i),i

cpr (i)
xi

−apr (i)+1

.

Calling also on the formula (16) for the Jacobian Jr , we see that the density ofΦr(X) at x ∈ (0,∞)p is such that

fr(x) ∝ xar−1
r e−cr xr1(0;∞)(xr)


i∈V\{r}

xai−1
i


1 +

cpr (i),i

cpr (i)
xi

−apr (i)

e−cixi1(0;∞)(xi).

To conclude the proof, it suffices to note that the right-hand side above is a product of densities of distributions of Xi,(r),
i ∈ V , as stated in the theorem. �

Remark 2. Anticipating the characterization result of the next section, we remark that if in the above theorem we take
S ∼ TK(a, cC) for a positive number c > 0, then withΦr defined by C as above we will get independent Xi,(r), i ∈ V , with

Xr,(r) ∼ G(ar , ccr) and
cpr (i),i

cpr (i)
Xi,(r) ∼ K


ai, apr (i) − ai, c

cpr (i) ci
cpr (i),i


, i ∈ V \ {r}.

As in [19], we illustrate Theorem 2 with two examples.

Example 1. Let T be 1–2–3 chain and c1 = c2 = c3 = c1,2 = c2,3 = c. Let S = (S1, S2, S3) have the respective tree-Kummer
distribution andΦ1,Φ2,Φ3 are defined by Eqs. (14) and (15). Then from Theorem 2 we conclude that

Φ1(S) = (S1(1 + S2(1 + S3)), S2(1 + S3), S3)
∼ G(a1, c)⊗ K(a2, a1 − a2, c)⊗ K(a3, a2 − a3, c),

and

Φ2(S) = (S1, S2(1 + S1)(1 + S3), S3) ∼ K(a1, a2 − a1, c)⊗ G(a2, c)⊗ K(a3, a2 − a3, c).

Example 2. Let T be a ‘‘daisy’’ on four vertices, V = {1, 2, 3, 4} with edges E = {1–4, 2–4, 3–4} and ci = ci,j = c for all
i ∈ V . Assume that S = (S1, S2, S3, S4) has a respective tree-Kummer distribution and Φr , r ∈ V , are defined by Eqs. (14)
and (15). Then from Theorem 2 we conclude that

Φ1(S) = (S1(1 + S4(1 + S2)(1 + S3)), S2, S3, S4(1 + S2)(1 + S3))
∼ G(a1, c)⊗ K(a2, a4 − a2, c)⊗ K(a3, a4 − a3, c)⊗ K(a4, a1 − a4, c)

and

Φ4(S) = (S1, S2, S3, S4(1 + S1)(1 + S2)(1 + S3))
∼ K(a1, a4 − a1, c)⊗ K(a2, a4 − a2, c)⊗ K(a3, a4 − a3, c)⊗ G(a4, c).
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4. Multivariate characterization of Kummer and Gamma laws

Let us consider first a symmetrized and slightly generalized version of Theorem 1, which can be viewed as a character-
ization of the simplest tree-Kummer distribution for the tree being a 1–2 chain.

Theorem 3. Let (S1, S2) be a random vector having a positive and continuously differentiable density f on (0,∞)2. For positive
numbers c1, c2 and c1,2 define the bijections Φ1 and Φ2 as in Section 3.1. Assume that random vectors X(1) = (X1,(1), X2,(1)) =

Φ1(S1, S2) and X(2) = (X1,(2), X2,(2)) = Φ2(S1, S2) have independent components. Then there exist positive numbers a1, a2 and
c such that

f (s1, s2) ∝ sa1−1
1 sa2−1

2 e−c(c1s1+c2s2+c1,2s1s2) 1(0;∞)2(s1, s2).

Equivalently,

X1,(1) ∼ G(a2, cc1),
c1,2
c1

X2,(1) ∼ K


a1, a2 − a1, c

c1c2
c1,2


or

c1,2
c2

X2,(1) ∼ K


a2, a1 − a2, c

c1c2
c1,2


, X2,(2) ∼ G(a1, cc2).

Proof. Note that X = c1,2X2,(1)/c1 and Y = c1,2X1,(1)/c2 are independent. Define U = Y/(1 + X) and V = X(1 + U). Then
U = c1,2X1,(2)/c1 and V = c1,2X2,(2)/c2. Consequently, they are also independent. Now by Theorem 1 it follows that there
exist positive numbers a1, a2 and c ′ such that X ∼ K(a1, a2 − a1, c ′) and Y ∼ G(a2, c ′); furthermore, U ∼ G(a1, c ′) and
V ∼ K(a2, a1 − a2, c ′). Then it is easily seen that the joint density f of (S1, S2) has the form

f (s1, s2) ∝ sa1−1
1 sa2−1

2 e−c′
c1,2
c1c2 (c1s1+c2s2+c1,2s1s2) 1(0;∞)2(s1, s2),

and the result follows upon taking c = c ′c1,2/(c1c2). �

The above result provides a characterization of the bivariate tree-Kummer distribution of S = (S1, S2) for a tree being the
1–2 chain. Equivalently, this result can be interpreted as a characterization of univariate Kummer and Gamma distributions
by considering the (properly scaled) components ofΦ1(S) andΦ2(S).

The aim of this section is to extend the above characterization to any tree. The result we obtain is analogous to the char-
acterization of GIG and Gamma distribution obtained in a tree setting in [19]. The analogue of the tree-Kummer distribution
used here is a tree-GIG distribution called theW c

G distribution in [19].

Theorem 4. Let T = (V , E) be a tree of size p. Let C ∈ CT and Φr be defined by (14) and (15). Let X = (Xi, i ∈ V ) be a
p-dimensional random vector with positive density, which is continuously differentiable on its support (0,∞)p. Suppose that for
every r ∈ V , which is a leaf of T , the components of the random vector X(r) = Φr(X) = (Xi,(r), i ∈ V ) are independent. Then
there exist a = (ai, i ∈ V ) ∈ (0,∞)p and c > 0 such that Xr,(r) ∼ G(ar , ccr) and

cpr (i),i

cpr (i)
Xi,(r) ∼ K


ai, apr (i) − ai, c

cpr (i) ci
cpr (i),i


for i ∈ V \ {r}.

Consequently, X ∼ TK(a, cC).

Proof. The proof will be by induction with respect to p = |V |. The case p = 2 is given in Theorem 3. For fixed p > 2, we
assume the assertion of the theorem to be true for every tree of size up to p − 1 and we consider an arbitrary tree of size p.

Let n andm be vertices from the set of leaves L ⊂ V of tree T (of course, L consists of at least two elements). Given that n
andm are leaves, each of them has precisely one neighbor, n1 and m1, respectively.

In order to make use of the induction assumption we will remove one vertex, n, from T together with the edge {n, n1}

and denote such a reduced tree of size p − 1 byT . Obviously,T is a tree. Let us introduce a random vectorX = (Xj)j∈V\{n},
whereXj = Xj for j ∈ V \ {n, n1} andXn1 = Xn1(1 + cn1nXn/cn1). Note thatX takes on values in (0,∞)p−1.

LetΦr , r ∈ V \{n}, be a transformation defined byT according to (15)with the same parameters ci,j, ci but for i, j ∈ V \{n}.
We setX(r) = (X1,(r), . . . ,Xp−1,(r)) = Φr(X).
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Fig. 2. Tn with the subtreeTn1 colored gray.

Let n1 be the root inT . Clearly,Tn1 is a directed subtree of Tn; see Fig. 2. Therefore C
T
n1(n1) = CT

n(n1) andXj,(n1) = Xj,(n)
for j ≠ n1. Using these facts and (15) we deduce that

Xn1,(n1) = Xn1


1 +

cn1,n
cn1

Xn

 
j∈C

T
n1 (n1)


1 +

cn1,j
cn1

Xj,(n1)



=


1 +

cn1n
cn1

Xn


Xn1


j∈CT

n (n1)


1 +

cn1,j
cn1

Xj,(n1)


= Xn1,(n)


1 +

cn1n
cn1

Xn


.

Consequently,

Xn1,(n1) =


1 +

cn1,n
cn1

Xn,(n)

1 +
cn1,n
cn

Xn1,(n)


Xn1,(n).

The latter equality, together with the independence of the components of X(n), entails the mutual independence of the
components ofX(n1).

We also note that for any ℓ ∈ L\{n}, Xj,(ℓ) =Xj,(ℓ) for j ∈ V \{n}, i.e.,Xℓ is a subvector ofXℓ and thus the components ofX(ℓ)
are also independent. The set of leaves ofT is a subset of L∪{n1}, so eventually we get a (p−1)-dimensional random vectorX, for which the assumptions of Theorem 4 are satisfied. Hence, in particular, there exists a vector of positive components
a(n) = (a(n)i , i ∈ V \ {n}) and c(n) > 0 such that for j ∉ {m, n},

cpm(j),j

cpm(j)

Xj,(m) =
cpm(j),j

cpm(j)
Xj,(m) ∼ K


a(n)j , a

(n)
pm(j) − a(n)j , c

(n) cpm(j) cj
cpm(j),j


, (21)

(here we used the fact that p
T
m(j) = pTm(j) =: pm(j) for j ∉ {m, n}),

Xm,(m) = Xm,(m) ∼ G(a(n)m , c
(n)cm) (22)

and for j ∉ {n, n1},

cpn(j),j

cpn(j)

Xj,(n1) =
cpn(j),j

cpn(j)
Xj,(n) ∼ K


a(n)j , a

(n)
pn(j) − a(n)j , c

(n) cpn(j) cj
cpn(j),j


(23)

(here we used the fact that p
T
n1(j) = pTn(j) =: pn(j) for j ∉ {n1, n} and that it does not matter if n1 is a leaf inT ).

Changing roles of nodes n andm (i.e., removing vertexm instead of n from tree T ) and then proceeding as before for the
random vectorX = (Xj)j∈V\{m}, whereXj = Xj for j ∉ {m,m1} andXm1 = Xm1(1 + cm1,mXm/cm1) for j ∉ {m, n}, we get

cpn(j),j

cpn(j)

Xj,(n) =
cpn(j),j

cpn(j)
Xj,(n) ∼ K


a(m)j , a(m)pn(j) − a(m)j , c(m)

cpn(j) cj
cpn(j),j


, (24)

Xn,(n) = Xn,(n) ∼ G(a(m)n , c(m)cn), (25)

and for j ∉ {m,m1},

cpm(j),j

cpm(j)

Xj,(m1) =
cpm(j),j

cpm(j)
Xj,(m) ∼ K


a(m)j , a(m)pm(j) − a(m)j , c(m)

cpm(j) cj
cpm(j),j


. (26)

In the next step we are going to show that a(n)j = a(m)j for every j ∈ V and that c(n) = c(m) for any leavesm, n.
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To see that c(n) = c(m) for any leaves m, n, it suffices to compare third parameters in (21) and (26) – or (23) and (24) –
since we chose above arbitrary leavesm, n. Furthermore, it follows from (23) and (24) that a(n)j = a(m)j for any j ∉ {m, n, n1}

and from (21) and (26) that a(n)j = a(m)j for j ∉ {m, n,m1} for any choice of leavesm, n.

Note that in any tree except the ‘‘daisy’’ one can choose leaves m, n in such a way that n1 ≠ m1. Then a(n)j = a(m)j =: aj
for any j ∉ {m, n}. For j = n, mwe just write am := a(n)m and an := a(m)n .

If n1 = m1 for any leaves n,m, we show the equality ann1 = amn1 using the assumption of independence of components of
X(r) for r ∈ L. We have

|JΦm(si, i ∈ V )|

i∈V

fi,(m)(si,(m)) = |JΦn(si, i ∈ V )|

i∈V

fi,(n)(si,(n)) (27)

where fi,(ℓ) is the density of Xi,(ℓ), i ∈ V , ℓ = m, n.
Now we compare the powers of sn1 on the left and the right-hand side of (27). Note that sn1 appears only in

fn1,(ℓ)


sn1


j∈Cℓ(n1)


1 +

cn1,j
cn1

sj,(ℓ)


,

for all ℓ ∈ {m, n}. In particular, see (24) and (21), it is raised to the power a(m)n1 in fn1,(m) and to the power a(n)n1 in fn1,(n).
Consequently, (27) yields a(m)n1 = a(n)n1 =: an1 . Now if there are at least three leaves we conclude that a(m)j = aj for any j and
for any leafm.

In the case of the chain 1–2–3 no comparisons between the distributions from (21)–(26) is possible. Therefore to identify
all the parameters we plug the densities from (21)–(26) directly into the identity (27) with m = 1 and n = 3. In this
fashion, we can see that all the unknown parameters in (21)–(26) are derived from a single collection (ai)i∈V and a number
c. Therefore, due to Theorem 2, we can write that, for any r ∈ V ,

Xr,(r) ∼ G(ar , ccr), Xi,(r) ∼ K

ai, apr (i) − ai, cci,

cpr (i), i
cpr (i)


for i ∈ V \ {r}

where c > 0, ai > 0, i ∈ V . �

Again, as in [19], we give two examples to illustrate Theorem 4.

Example 3. Consider chain 1–2–3 and related mapsΦ1,Φ3 with all ci’s and ci,j’s equal to 1. Let S be a random vector valued
in (0,∞)3. Assume that the components of

Φ1(S) = (S1(1 + S2(1 + S3)), S2(1 + S3), S3)

are independent and that the components of

Φ3(S) = (S1, S2(1 + S1), S3(1 + S2(1 + S1)))

are also independent. Then from Theorem 4, the density of S is of the form

f (s) ∝ sa1−1
1 sa2−1

2 sa3−1
3 e−c(s1+s2+s3+s1s2+s2s3+s1s2s3)1(0;∞)3(s).

Example 4. Consider a ‘‘three petal daisy’’, that is the tree with vertices V = {1, 2, 3, 4} and edges E = {1–4, 2–4, 3–4} and
relatedmapsΦ1,Φ2,Φ3 with all ci’s and ci,j’s equal to 1. Let S be a random vector valued in (0,∞)4 with sufficiently smooth
density. Assume that the components of

Φ1(S) = (S1(1 + S4(1 + S2)(1 + S3)), S2, S3, S4(1 + S2)(1 + S3))

are independent, the components of

Φ2(S) = (S1, S2(1 + S4(1 + S1)(1 + S3)), S3, S4(1 + S1)(1 + S3))

are independent, and the components of

Φ3(S) = (S1, S2, S3(1 + S4(1 + S1)(1 + S2)), S4(1 + S1)(1 + S2))

are also independent. Then, from Theorem 4, the density of S is of the form

f (s) ∝ sa1−1
1 sa2−1

2 sa3−1
3 sa4−1

4 e−c(s1+s2+s3+s4+s1s4+s2s4+s3s4+s1s2s4+s1s3s4+s2s3s4+s1s2s3s4)1(0;∞)4(s).
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5. Concluding remarks

In closing, we would like to remark that recently the approach of [19] to the MY property on trees was extended to the
matrix-variate case in [5]. To a large extent, this work was possible due to existing characterizations of the Wishart (the
matrix analogue of the Gamma distribution) and the matrix GIG distributions based on the matrix version of MY property;
see, e.g., [11,17,20,25]. In the case of Kummer and Gamma distributions, a matrix version of the independence property
from [15] was obtained in [13] and related characterization remains an open problem. A matrix version of the property and
an extension of the characterization result from Section 2 are currently under study.

It would also be interesting to know whether the property from [10] can be embedded in the context of stochastic
processes as was the case for the original MY property. As mentioned before, this was done in [22,23]. Similarly, the MY
property on trees was related to the hitting times of the Brownian motion and conditional structures of the geometric
Brownian motion in [28,21]. Therefore it is also of some interest to determine whether the tree version of the property
from [10] discussed here has also connections to stochastic processes.
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