
http://www.mini.pw.edu.pl/~mossakow
Krzysztof Mossakowski
Faculty of Mathematics and Information Science

Advanced Windows Programming

.NET Framework

based on:
A. Troelsen, Pro C# 2005 and .NET 2.0 Platform, 3rd Ed., 2005, Apress
J. Richter, Applied .NET Frameworks Programming, 2002, MS Press
D. Watkins et al., Programming in the .NET Environment, 2002, Addison Wesley
T. Thai, H. Lam, .NET Framework Essentials, 2001, O’Reilly
D. Beyer, C# COM+ Programming, M&T Books, 2001, chapter 1

.NET Framework - 2Advanced Windows Programming

http://www.mini.pw.edu.pl/~mossakow
Krzysztof Mossakowski
Faculty of Mathematics and Information Science

Contents
The most important features of .NET

Assemblies
Metadata
Common Type System
Common Intermediate Language
Common Language Runtime
Deploying .NET Runtime

Garbage Collection
Serialization

.NET Framework - 3Advanced Windows Programming

http://www.mini.pw.edu.pl/~mossakow
Krzysztof Mossakowski
Faculty of Mathematics and Information Science

.NET Benefits
In comparison with previous Microsoft’s technologies:

Consistent programming model – common OO programming model
Simplified programming model – no error codes, GUIDs, IUnknown, etc.
Run once, run always – no "DLL hell"
Simplified deployment – easy to use installation projects
Wide platform reach
Programming language integration
Simplified code reuse
Automatic memory management (garbage collection)
Type-safe verification
Rich debugging support – CLR debugging, language independent
Consistent method failure paradigm – exceptions
Security – code access security
Interoperability – using existing COM components, calling Win32 functions

.NET Framework - 4Advanced Windows Programming

http://www.mini.pw.edu.pl/~mossakow
Krzysztof Mossakowski
Faculty of Mathematics and Information Science

Base Class Libraries
Classes available to all .NET Framework languages
Various primitives:

threads, file input/output, graphical rendering, interaction with
external hardware devices
database access, XML manipulation, security

.NET Framework - 5Advanced Windows Programming

http://www.mini.pw.edu.pl/~mossakow
Krzysztof Mossakowski
Faculty of Mathematics and Information Science

.NET Programming Languages
http://www.dotnetpowered.com/languages.aspx
Examples:

C#
Managed Extensions for C++
Java - Visual J# .NET
JavaScript - JScript .NET
Perl
Pascal, Delphi
PHP
Smalltalk

.NET Framework - 6Advanced Windows Programming

http://www.mini.pw.edu.pl/~mossakow
Krzysztof Mossakowski
Faculty of Mathematics and Information Science

.NET Assemblies
Binaries containing Common Intermediate Language (CIL)
instructions and type metadata

.dll or .exe files, which cannot be run without the .NET runtime
The most important features:

establishing a type boundary
versioning
self-describing
configurable

.NET Framework - 7Advanced Windows Programming

http://www.mini.pw.edu.pl/~mossakow
Krzysztof Mossakowski
Faculty of Mathematics and Information Science

.NET Assembly’s Format
.NET assembly consists of the following elements:

Win32 File Header
CLR File Header
CIL code
type metadata
assembly manifest
optional embedded resource

.NET Framework - 8Advanced Windows Programming

http://www.mini.pw.edu.pl/~mossakow
Krzysztof Mossakowski
Faculty of Mathematics and Information Science

Single-File and Multifile Assemblies
In a great number of cases, there is a simple one-to-one
correspondence between a .NET assembly and the binary file
(.dll or .exe)

this is single-file assembly
Multifile assemblies are composed of numerous .NET binaries
(modules)

one of these modules (primary module) must contain the
assembly manifest
multifile assemblies allow to use more flexible deployment
option (e.g. the user is forced to download only selected
modules)

.NET Framework - 9Advanced Windows Programming

http://www.mini.pw.edu.pl/~mossakow
Krzysztof Mossakowski
Faculty of Mathematics and Information Science

Private Assemblies
Private assemblies are required to be located in application’s
directory or subdirectory
Identification of a private assembly:

name of the module that contains the assembly’s manifest
(without an extension)
version number

Probing – the process of mapping an external assembly
request to the location of the requested binary file

.NET Framework - 10Advanced Windows Programming

http://www.mini.pw.edu.pl/~mossakow
Krzysztof Mossakowski
Faculty of Mathematics and Information Science

Shared Assemblies
Single copy of a shared assembly can be used by several
applications on a single machine
A shared assembly should be installed into the Global
Assembly Cache (GAC), located in Assembly subdirectory
of Windows directory

since VS 2005 also *.exe files can be installed into the GAC
(previously only *.dll files were accepted)

To list content of the GAC, install a new assembly, or
uninstall an assembly, use gacutil.exe utility

installing an assembly:
gacutil.exe –i MyAssembly.dll

Two or more assemblies of the same name can coexist in
the GAC (must have different versions)

the end of "DLL hell"

.NET Framework - 11Advanced Windows Programming

http://www.mini.pw.edu.pl/~mossakow
Krzysztof Mossakowski
Faculty of Mathematics and Information Science

Signing an Assembly
Only assemblies signed using a strong name can be installed
into the GAC
Signing an assembly:
1. Use the sn.exe utility to generate a .snk file with

public/private key information
sn –k MyKey.snk

2. Apply the .snk file to the assembly (using
AssemblyKeyFile attribute or by setting project’s properties
in Visual Studio)

3. Compile the assembly

.NET Framework - 12Advanced Windows Programming

http://www.mini.pw.edu.pl/~mossakow
Krzysztof Mossakowski
Faculty of Mathematics and Information Science

Configuring an Assembly
Assemblies can be configured using *.config files

simple XML files that can be manually edited or configured using
.NET Framework 2.0 Configuration utility (mscorcfg.exe)

<configuration>
<runtime>
<assemblyBinding xmlns="urn:schemas-microsoft-com:asm.v1">
<dependentAssembly>
<assemblyIdentity name="CarLibrary"

publicKeyToken="219ef380c9348a38"
culture=""/>

<bindingRedirect oldVersion= "1.0.0.0"
newVersion= "2.0.0.0"/>

</dependentAssembly>
</assemblyBinding>

</runtime>
</configuration>

<configuration>
<runtime>
<assemblyBinding xmlns="urn:schemas-microsoft-com:asm.v1">
<dependentAssembly>
<assemblyIdentity name="CarLibrary"

publicKeyToken="219ef380c9348a38"
culture=""/>

<bindingRedirect oldVersion= "1.0.0.0"
newVersion= "2.0.0.0"/>

</dependentAssembly>
</assemblyBinding>

</runtime>
</configuration>

.NET Framework - 13Advanced Windows Programming

http://www.mini.pw.edu.pl/~mossakow
Krzysztof Mossakowski
Faculty of Mathematics and Information Science

Resolving an External Assembly Reference

.NET Framework - 14Advanced Windows Programming

http://www.mini.pw.edu.pl/~mossakow
Krzysztof Mossakowski
Faculty of Mathematics and Information Science

Assembly Manifest
Manifest is a piece of metadata which describes the assembly
itself
Manifest documents all external assemblies required by the
current assembly to function correctly
Content of a manifest:

the name of the assembly
the version of the assembly
the shared name for the assembly
information about the type of environment the assembly
supports (e.g. operating system and languages)
list of files in the assembly
list of all other assemblies this assembly references

.NET Framework - 15Advanced Windows Programming

http://www.mini.pw.edu.pl/~mossakow
Krzysztof Mossakowski
Faculty of Mathematics and Information Science

.NET Type Metadata
.NET assembly contains full, complete and accurate
metadata, which describes:

all types (classes, structures, enumerations)
all members of types (methods, properties, events etc.)

Metadata is emitted by a compiler
Some benefits of using metadata:

no need to register in a system (unlike COM objects)
no need for header files
tips from IntelliSense in Visual Studio
crucial for some .NET technologies, e.g. remoting, reflection,
late binding, XML web services, and object serialization
garbage collection

.NET Framework - 16Advanced Windows Programming

http://www.mini.pw.edu.pl/~mossakow
Krzysztof Mossakowski
Faculty of Mathematics and Information Science

Reflection
Reflection is a process of runtime type discovery
Allows to programmatically obtain metadata information

System.Reflection namespace:
Assembly, AssemblyName, EventInfo, FieldInfo,
MemberInfo, MethodInfo, Module, ParameterInfo,
PropertyInfo

System.Type class

.NET Framework - 17Advanced Windows Programming

http://www.mini.pw.edu.pl/~mossakow
Krzysztof Mossakowski
Faculty of Mathematics and Information Science

Attributes
A way for programmers to embed additional metadata into an
assembly

attributes are code annotations that can be applied to a given
type, member, assembly, or module

.NET attributes are class types that extend the abstract
System.Attribute base class
Some predefined attributes:

[CLSCompliant], [DllImport], [Obsolete],
[Serializable], [NonSerializable], [WebMethod]

Custom attributes can be created

.NET Framework - 18Advanced Windows Programming

http://www.mini.pw.edu.pl/~mossakow
Krzysztof Mossakowski
Faculty of Mathematics and Information Science

Common Type System (CTS)
Types in .NET

classes (sealed classes, implementing interfaces, abstract
classes, internal or public classes)
structures
interfaces (named collections of abstract member definitions)
enumerations
delegates (equivalent of type-safe function pointer)

CTS is a formal specification that documents how types must
be defined in order to be hosted by the CLR

.NET Framework - 19Advanced Windows Programming

http://www.mini.pw.edu.pl/~mossakow
Krzysztof Mossakowski
Faculty of Mathematics and Information Science

Intrinsic CTS Data Types
Managed C++C#VB.NETCTS Data Type

BoolboolBooleanSystem.Boolean

DecimaldecimalDecimalSystem.Decimal

String^stringStringSystem.String

wchar_tcharCharSystem.Char

Object^objectObjectSystem.Object

DoubledoubleDoubleSystem.Double

FloatfloatSingleSystem.Single

unsigned __int64ulongULongSystem.UInt64

unsigned int or unsigned longuintUIntegerSystem.UInt32

unsigned shortushortUShortSystem.UInt16

__int64longLongSystem.Int64

int or longintIntegerSystem.Int32

shortshortShortSystem.Int16

signed charsbyteSByteSystem.SByte

unsigned charbyteByteSystem.Byte

.NET Framework - 20Advanced Windows Programming

http://www.mini.pw.edu.pl/~mossakow
Krzysztof Mossakowski
Faculty of Mathematics and Information Science

Type Distinction - Namespaces
Namespace is a grouping of related types contained in an
assembly
A single assembly can contain any number of namespaces

.NET Framework - 21Advanced Windows Programming

http://www.mini.pw.edu.pl/~mossakow
Krzysztof Mossakowski
Faculty of Mathematics and Information Science

Standard .NET Namespaces

Types wrapping graphical primitives such as
bitmaps, fonts, and icons; printing capabilities

System.Drawing
System.Drawing.Drawing2D
System.Drawing.Printing

Source code debugging and tracingSystem.Diagnostics

ADO.NET for database solutionsSystem.Data
System.Data.Odbc
System.Data.OracleClient
System.Data.OleDb
System.Data.SqlClient

Stock container objects, base types and
interfaces used for building customized
collections; generics

System.Collections
System.Collections.Generic

Types dealing with intrinsic data, mathematical
computations, random number generation,
garbage collection, exceptions, attributes

System

.NET Framework - 22Advanced Windows Programming

http://www.mini.pw.edu.pl/~mossakow
Krzysztof Mossakowski
Faculty of Mathematics and Information Science

Standard .NET Namespaces – cont.

Support for multithreaded applicationsSystem.Threading

ASP.NET, XML Web ServicesSystem.Web

Windows Forms (GUI for Windows
applications)

System.Windows.Forms

Interaction with XML dataSystem.Xml

Interaction with unmanaged code (DLL
and COM)

System.Runtime.InteropServices

Runtime type discovery, dynamic creation
of types

System.Reflection
System.Reflection.Emit

Network programming, socketsSystem.Net

File I/O, buffering, compression, serial
ports

System.IO
System.IO.Compression
System.IO.Ports

.NET Framework - 23Advanced Windows Programming

http://www.mini.pw.edu.pl/~mossakow
Krzysztof Mossakowski
Faculty of Mathematics and Information Science

Referencing External Assemblies
To use types from external assembly:
1. Add a reference to the project

2. Use fully qualified names

or utilize using directive

System.Drawing.Bitmap bmp =
new System.Drawing.Bitmap(50, 50);

System.Drawing.Bitmap bmp =
new System.Drawing.Bitmap(50, 50);

using System.Drawing;using System.Drawing;

.NET Framework - 24Advanced Windows Programming

http://www.mini.pw.edu.pl/~mossakow
Krzysztof Mossakowski
Faculty of Mathematics and Information Science

Common Intermediate Language (CIL)
Also known as Microsoft Intermediate Language (MSIL)
CIL is a language that sits above any particular platform-
specific instruction set

the same idea as Java’s virtual machine
Compilers of all .NET-aware languages emit CIL instructions

binaries are platform-independent
When the CIL code is about to run, the Jitter (just-in-time
compiler) compiles it into native (machine) code

Jitter will cache resulting machine code in memory

.NET Framework - 25Advanced Windows Programming

http://www.mini.pw.edu.pl/~mossakow
Krzysztof Mossakowski
Faculty of Mathematics and Information Science

.NET Execution Engine
(mscoree.dll)

CLR Workflow

Class Loader

Jitter

Platform-Specific
Instructions

Execute
the member

Base Class
Libraries

Assembly
(CIL, metadata, manifest)

.NET Compiler

.NET Source Code

.NET Framework - 26Advanced Windows Programming

http://www.mini.pw.edu.pl/~mossakow
Krzysztof Mossakowski
Faculty of Mathematics and Information Science

Reverse Engineering
CIL makes reverse engineering of any .NET solution very easy

metadata
Tools:

IL Disassembler (ildasm.exe), included in .NET Framework SDK
shows CIL code
Lutz Roeder's .NET Reflector
(http://www.aisto.com/roeder/dotnet/)
shows CIL code and its representation in C#, VB.NET, C++,
Delphi, and other languages

.NET Framework - 27Advanced Windows Programming

http://www.mini.pw.edu.pl/~mossakow
Krzysztof Mossakowski
Faculty of Mathematics and Information Science

Obfuscating the CIL
The purpose of an obfuscator: to modify .NET assembly
without affecting its functioning, to make it difficult or
impossible to recover source code
Potential downsides of obfuscating:

can break code that depends on reflection, serialization, or
remoting
can make diagnosing and debugging problems
adds another step to build process

Obfuscation in Visual Studio .NET
Community Edition of Dotfuscator for .NET supports basic entity
renaming and removal of unused metadata

Commercial obfuscators

.NET Framework - 28Advanced Windows Programming

http://www.mini.pw.edu.pl/~mossakow
Krzysztof Mossakowski
Faculty of Mathematics and Information Science

Obfuscation Methods
Entity renaming

changing names of namespaces, classes, methods, properties,
fields, enumerations

Control flow obfuscation
modifying the original code (e.g. transforming if or while
statements by using goto statement)

Removal of unused members
String encryption
Breaking IL Disassembler

injecting code into the obfuscated assembly that is designed to
break IL Disassembler so that it won’t open the assembly at all

Compiling into native code

.NET Framework - 29Advanced Windows Programming

http://www.mini.pw.edu.pl/~mossakow
Krzysztof Mossakowski
Faculty of Mathematics and Information Science

Common Language Specification (CLS)
CLS is a set of rules provided to:

describe the minimal and complete set of features to produce
code that can be hosted by CLR
ensure that products of compilers will work properly in .NET
environment

Sample rules:
representation of text strings
internal representation of enumerations
definition of static members

.NET Framework - 30Advanced Windows Programming

http://www.mini.pw.edu.pl/~mossakow
Krzysztof Mossakowski
Faculty of Mathematics and Information Science

Common Language Runtime (CLR)
CLR is physically represented by mscoree.dll library
(Common Object Runtime Execution Engine)

this library is loaded automatically when an assembly is
referenced for use

CLR responsibilities:
resolving the location of an assembly and finding the requested
type within the binary by reading the contained metadata
loading the type into memory
compiling CIL into platform-specific instructions
performing security checks
executing the code

.NET Framework - 31Advanced Windows Programming

http://www.mini.pw.edu.pl/~mossakow
Krzysztof Mossakowski
Faculty of Mathematics and Information Science

Deploying .NET Runtime
.NET assemblies can be executed only on a machine that has
the .NET Framework installed
.NET Framework 1.1 was included in Windows Server 2003
and was an optional component of Windows XP Service
Pack 1
Redistributable packages (dotnetfx.exe)

.NET Framework 1.1
23.1 MB
Windows 98/Me/NT/2000/XP/2003, IE 5.01

.NET Framework 2.0
22.4 MB
Windows 98/Me/NT/2000/XP SP2/2003, IE 5.01
Windows Installer 3.0
disk space: 280 MB (x86), 610 MB (x64)

.NET Framework - 32Advanced Windows Programming

http://www.mini.pw.edu.pl/~mossakow
Krzysztof Mossakowski
Faculty of Mathematics and Information Science

Mono and .NET Portable
Mono project (http://www.mono-project.com)

support for .NET client and server applications on Linux, Solaris,
Mac OS X, Windows and Unix
sponsored by Novell
LGPL (Lesser General Public Licence)

Portable .NET (http://www.dotgnu.org)
supported systems: GNU/Linux, NetBSD, FreeBSD,
Cygwin/Mingw32, Mac OS X, Solaris, AIX
GPL (General Public Licence)

Official international standards:
ECMA-334: The C# Language Specification
ECMA-335: The Common Language Infrastructure (CLI)

.NET Framework - 33Advanced Windows Programming

http://www.mini.pw.edu.pl/~mossakow
Krzysztof Mossakowski
Faculty of Mathematics and Information Science

.NET Framework 2.0 SDK
.NET Framework 2.0 SDK

requires Windows 2000 SP3/XP SP2/2003
requires .NET Framework Redistributable Package installation
contains command line tools, e.g. csc.exe – C# compiler and
cordbg.exe – debugger
occupies 354 MB
there are Language Packs which contain translated text, such as
error messages

Polish – 1.9 MB

.NET Framework - 34Advanced Windows Programming

http://www.mini.pw.edu.pl/~mossakow
Krzysztof Mossakowski
Faculty of Mathematics and Information Science

IDE Tools for C# and .NET
Visual Studio 2005

versions: Express, Standard, Professional, Team, Tools for
Office
.NET Framework 2.0 SDK included

SharpDevelop (http://www.sharpdevelop.com)
Windows
LGPL

Mono Develop (http://www.monodevelop.com)
Linux, Mac OS X
GPL

.NET Framework - 35Advanced Windows Programming

http://www.mini.pw.edu.pl/~mossakow
Krzysztof Mossakowski
Faculty of Mathematics and Information Science

Garbage Collection (GC)
.NET objects are allocated onto a region of memory termed
the managed heap
They will be destroyed by the garbage collector

make no assumption about time of destruction
Garbage collection (an attempt to free up memory) will be
performed when CLR determines that the managed heap
does not have sufficient available memory

all active threads are suspended
special GC thread tries to free memory
suspended threads are waken up

GC in .NET is highly optimized

.NET Framework - 36Advanced Windows Programming

http://www.mini.pw.edu.pl/~mossakow
Krzysztof Mossakowski
Faculty of Mathematics and Information Science

Garbage Collection Process
The runtime investigates objects on the managed heap to
determine if they are still reachable

object graph is built
Unreachable objects are marked as garbage for termination
and swept from memory
The remaining space on the heap is compacted

To optimize the process, two distinct heaps are used:
one is specifically used to store very large objects and is less
frequently consulted during the collection cycle

.NET Framework - 37Advanced Windows Programming

http://www.mini.pw.edu.pl/~mossakow
Krzysztof Mossakowski
Faculty of Mathematics and Information Science

Object Generations
To help optimize the process, each object on the heap is
assigned to a specific generation

the idea: the longer an object has existed on the heap, the
more likely it is to stay there

Used generations:
Generation 0: newly allocated objects that have never been
marked for collection
Generation 1: objects that survived one sweep
Generation 2: objects that have survived more than one sweep

Garbage collector starts from generation 0 objects, if not
enough memory was released, it works with generation 1
objects, and later with generation 2

.NET Framework - 38Advanced Windows Programming

http://www.mini.pw.edu.pl/~mossakow
Krzysztof Mossakowski
Faculty of Mathematics and Information Science

System.GC Class
AddMemoryPressure(), RemoveMemoryPressure() – changes
settings of the GC of the need of memory
Collect() – forces to perform garbage collection
CollectionCount() – returns a value representing how many times a
given generation has been swept
GetGeneration() – returns the generation to which an object
currently belongs
GetTotalMemory() – returns the estimated amount of memory (in
bytes) currently allocated on the managed heap
MaxGeneration – the maximum of supported generations (2 for NET
2.0)
SupressFinalize() – sets a flag indicating that the specified object
should not have its Finalize() method called
WaitForPendingFinalizers() – suspends the current thread until
all finalizable objects have been finalized

.NET Framework - 39Advanced Windows Programming

http://www.mini.pw.edu.pl/~mossakow
Krzysztof Mossakowski
Faculty of Mathematics and Information Science

Forcing a Garbage Collection
Sample scenarios when forcing a garbage collection can be
useful:

the application is about to enter a block of code which should
not be interrupted
the application has just finished allocating an extremely large
number of objects and as much memory as possible should be
freed

GC.Collect();
GC.WaitForPendingFinalizers();

GC.Collect();
GC.WaitForPendingFinalizers();

.NET Framework - 40Advanced Windows Programming

http://www.mini.pw.edu.pl/~mossakow
Krzysztof Mossakowski
Faculty of Mathematics and Information Science

Finalizable Objects
Finalize() method is declared as a destructor in C# and
C++ languages
Garbage collector will call an object’s Finalize() method
(if supported) before removing the object from memory

Important recommendation: design classes to avoid
supporting Finalize() method

time of calling this method is unpredictable

.NET Framework - 41Advanced Windows Programming

http://www.mini.pw.edu.pl/~mossakow
Krzysztof Mossakowski
Faculty of Mathematics and Information Science

Disposable Objects

public class MyClass : IDisposable
{

public void Dispose()
{

// here dispose all memory
// - all unmanaged resources
// - call Dispose() method of all contained
// disposable objects

}
}

using (MyClass mc = new MyClass()) {
// ... using mc object

} // here Dispose() method is called automatically

public class MyClass : IDisposable
{

public void Dispose()
{

// here dispose all memory
// - all unmanaged resources
// - call Dispose() method of all contained
// disposable objects

}
}

using (MyClass mc = new MyClass()) {
// ... using mc object

} // here Dispose() method is called automatically

.NET Framework - 42Advanced Windows Programming

http://www.mini.pw.edu.pl/~mossakow
Krzysztof Mossakowski
Faculty of Mathematics and Information Science

Formalized Disposal Pattern
public class MyResourceWrapper : IDisposable
{

private bool disposed = false;
public void Dispose() {

CleanUp(true);
GC.SuppressFinalize(this);

}
private void CleanUp(bool disposing) {

if (!disposed) {
if (disposing) {

// dispose managed resources
}
// clean up unmanaged resources

}
disposed = true;

}
~MyResourceWrapper() {

CleanUp(false);
}

}

public class MyResourceWrapper : IDisposable
{

private bool disposed = false;
public void Dispose() {

CleanUp(true);
GC.SuppressFinalize(this);

}
private void CleanUp(bool disposing) {

if (!disposed) {
if (disposing) {

// dispose managed resources
}
// clean up unmanaged resources

}
disposed = true;

}
~MyResourceWrapper() {

CleanUp(false);
}

}

.NET Framework - 43Advanced Windows Programming

http://www.mini.pw.edu.pl/~mossakow
Krzysztof Mossakowski
Faculty of Mathematics and Information Science

Serialization
Serialization is a process of persisting (and possibly
transferring) the state of an object to a stream
The persisted data sequence contains all necessary
information needed to reconstruct (deserialize) the state of
the object
When an object is persisted to a stream, all associated data
(base classed, contained objects, etc.) are automatically
serialized as well
It allows to persist an object graph in a variety of formats
Full set of related objects (so-called object graph) is serialized

.NET Framework - 44Advanced Windows Programming

http://www.mini.pw.edu.pl/~mossakow
Krzysztof Mossakowski
Faculty of Mathematics and Information Science

Serialization Attributes
All objects in an object graph to serialize must be marked
with the [Serializable] attribute

all public and private fields of a class marked with this attribute
are serializable by default

[OptionalField] attribute can be used for fields that can
be missing

[Serializable]
public class MyClass
{

public bool boolToSerialize;
private int[] arrayOfIntsToSerialize;

[NonSerialized]
public string notToSerialize;

}

[Serializable]
public class MyClass
{

public bool boolToSerialize;
private int[] arrayOfIntsToSerialize;

[NonSerialized]
public string notToSerialize;

}

.NET Framework - 45Advanced Windows Programming

http://www.mini.pw.edu.pl/~mossakow
Krzysztof Mossakowski
Faculty of Mathematics and Information Science

Serialization Formatters
Formatters available in .NET 2.0:

BinaryFormatter – compact binary format
SoapFormatter – SOAP message
XmlFormatter – XML document

Only BinaryFormatter preserves full type fidelity (each
type’s fully qualified name and the full name of the assembly
is stored)

.NET Framework - 46Advanced Windows Programming

http://www.mini.pw.edu.pl/~mossakow
Krzysztof Mossakowski
Faculty of Mathematics and Information Science

Serialization Sample

MyClass mc = new MyClass();
//SoapFormatter formatter = new SoapFormatter()
BinaryFormatter formatter = new BinaryFormatter();

// serializing
Stream stream = new FileStream("out.dat",

FileMode.Create,
FileAccess.Write,
FileShare.None);

formatter.Serialize(stream, mc);
stream.Close();

// deserializing
stream = File.OpenRead("out.dat");
MyClass mc2 = (MyClass)formatter.Deserialize(stream);
stream.Close();

MyClass mc = new MyClass();
//SoapFormatter formatter = new SoapFormatter()
BinaryFormatter formatter = new BinaryFormatter();

// serializing
Stream stream = new FileStream("out.dat",

FileMode.Create,
FileAccess.Write,
FileShare.None);

formatter.Serialize(stream, mc);
stream.Close();

// deserializing
stream = File.OpenRead("out.dat");
MyClass mc2 = (MyClass)formatter.Deserialize(stream);
stream.Close();

.NET Framework - 47Advanced Windows Programming

http://www.mini.pw.edu.pl/~mossakow
Krzysztof Mossakowski
Faculty of Mathematics and Information Science

XML Serialization

MyClass mc = new MyClass();
XmlSerializer formatter = new XmlSerializer(

typeof(MyClass),
new Type[] {typeof(MyClass)});

// serializing
Stream stream = new FileStream("out.xml",

FileMode.Create,
FileAccess.Write,
FileShare.None);

formatter.Serialize(stream, mc);
stream.Close();

// deserializing
stream = File.OpenRead("out.xml");
MyClass mc2 = (MyClass)formatter.Deserialize(stream);
stream.Close();

MyClass mc = new MyClass();
XmlSerializer formatter = new XmlSerializer(

typeof(MyClass),
new Type[] {typeof(MyClass)});

// serializing
Stream stream = new FileStream("out.xml",

FileMode.Create,
FileAccess.Write,
FileShare.None);

formatter.Serialize(stream, mc);
stream.Close();

// deserializing
stream = File.OpenRead("out.xml");
MyClass mc2 = (MyClass)formatter.Deserialize(stream);
stream.Close();

.NET Framework - 48Advanced Windows Programming

http://www.mini.pw.edu.pl/~mossakow
Krzysztof Mossakowski
Faculty of Mathematics and Information Science

Customizing the Serialization Process
.NET Framework 1.1

implement ISerializable interface

.NET Framework 2.0
use attributes:
OnDeserializedAttribute
OnDeserializingAttribute
OnSerializedAttribute
OnSerializingAttribute
OptionalFieldAttribute

SerializationInfo object is a "property bag" that
maintains name/value pairs representing the state of an
object during the serialization process

