.NET Programming

ASP.NET

M. MacDonald, Beginning ASP.NET 3.5 in C# 2008, 2nd Ed., 2007, Apress
M. MacDonald, M. Szpuszta, Pro ASP.NET 3.5 in C# 2008, 3rd Ed., 2009, Apress

S. Walther, ASP.NET 3.5 Unleashed, 2008, Sams
B. Evjen et al., Professional ASP.NET 3.5 SP1 Edition In C# and VB, 2009, Wrox

G. Shepherd, Microsoft ASP.NET 3.5 Step by Step, 2008, Microsoft Press
MSDN

Krzysztof Mossakowski http://www.mini.pw.edu.pl/~mossakow

Contents
General Information Personalisation
Pages Membership and Role
Controls Management

= HTML Server Controls
m ASP.NET Server Controls
= Validation Controls
ASP.NET AJAX
Data Binding
Web Parts
Site Navigation
Master Pages
Themes and Skins

State Management

User Controls, Server Controls,
HTTP Modules, and HTTP
Handlers

Debugging and Error Handling
Caching

Security

Configuration Management
Packaging and Deploying

ASP.NET 3

General Information

Krzysztof Mossakowski http://www.mini.pw.edu.pl/~mossakow

ASP.NET Page and Controls Framework

ASP.NET is a part of the .NET Framework

A programming framework that runs on a Web server to
dynamically produce and render ASP.NET Web pages

ASP.NET Web pages can be requested from any browser or
client device

= ASP.NET renders appropriate markup for the browser making
the request

m It is also possible to target a specific browser
= ASP.NET supports mobile controls for Web-enabled devices
ASP.NET Web pages are completely object-oriented

= There exist properties, methods, and events for all HTML
elements

= ASP.NET uses a unified model for responding to client events in
code that runs on the server

ASP.NET Compilation

All ASP.NET code is compiled
The benefits from compiling:

= Performance, security, stability, interoperability
Features of the ASP.NET compilation architecture:

= Multiple language support — different languages can be used in
the same application

= Automatic compilation — ASP.NET automatically compiles the
application code and any dependent resources the first time a
user requests a resource from the Web site

= Flexible deployment

m Extensible build system — custom classes to compile custom
resources can be created

Security Infrastructure

ASP.NET has all security features of the .NET Framework

ASP.NET provides an advanced security infrastructure for
authenticating and authorizing user access as well as
performing other security-related tasks

= Windows authentication supplied by IIS or ASP.NET forms
authentication can be used

ASP.NET always runs with a particular Windows identity

= It is possible to secure the application using Windows
capabilities, database permissions, and so on

State-Management Facilities

ASP.NET provides intrinsic state management functionality
= Information can be stored between page requests

The following levels of state management are available:
Application-specific

Session-specific

Page-specific

User-specific

Developer-defined

ASP.NET offers distributed state facilities

= [t allows to manage state information across multiple instances
of the same application on several computers

ASP.NET Configuration

ASP.NET configuration system allows to define configuration
settings for a Web server, Web site, or for individual
applications

= Configuration settings can be revised at any time with minimal
impact on operational Web applications and servers

ASP.NET configuration settings are stored in XML-based files

® machine.config

® Web.config

ASP.NET 9

Health Monitoring and Performance Features

ASP.NET provides an easy way to monitor the health of
deployed ASP.NET applications

= It provides detailed run-time information about ASP.NET
resources

ASP.NET supports two groups of performance counters
accessible to applications:

= The ASP.NET system performance counter group

= The ASP.NET application performance counter group

Krzysztof Mossakowski http://www.mini.pw.edu.pl/~mossakow

Debugging Support

ASP.NET provides cross-language and cross-computer
debugging support
= Both managed and unmanaged objects can be debugged
= All CLR languages and script languages can be debugged

Trace mode supported by ASP.NET enables to insert
instrumentation messages into ASP.NET Web pages

= Trace messages can be accessed programmatically

ASP.NET 11

ASP.NET 3.5 New Features

ASP.NET 3.5 specific features:
= The ListView control
= The DataPager control
= The LingDataSource
[
[|

Integrated AJAX support
Improved designer support for AJAX control extenders
ASP.NET 3.5 - related Visual Studio 2008 enhancements
Nested Master Page support
Multi-Framework Targeting
Enhanced Web design experience
JavaScript IntelliSense
JavaScript debugging
CSS Properties window
Manage Styles tool window

Krzysztof Mossakowski http://www.mini.pw.edu.pl/~mossakow

ASP.NET Development Requirements

.NET Framework

Code authoring environments (e.g Visual Studio or Visual
Web Developer)
Web servers

= Visual Studio uses the ASP.NET Development Server which runs
pages locally without requiring to install IIS

= ASP.NET applications are typically hosted using IIS (Internet
Information Services) as the Web server

Optionally:
= Databases

= Some ASP.NET features such as membership and profile
properties, require a database

m SMTP servers

= Some ASP.NET controls, such as PasswordRecovery,
require the ability to send e-mail messages

Application Folders

App Browsers - browser definitions

App_Code - source code for utility classes and business objects that
should be compiled

App Data - application data files (.mdf, .xml, etc.)
App_GlobalResources - resources (.resx and .resources files) of
global scope

App LocalResources — resources associated with a specific page, user
control, or master page in the application

App_Themes - collection of files defining the appearance of ASP.NET Web
pages and controls

App WebReferences - reference contract files (.wsdl files), schemas
(.xsd files), and discovery document files (.disco and .discomap
files) defining a Web reference

Bin - compiled assemblies (.d11 files) for controls, components, or other
code referenced in the application

Web Site File Types

.asax - typically a Global. asax file with application's code

.ascx - web user control files that defines a custom,
reusable user controls

.ashx - generic handler files that contains code to handle all
iIncoming requests

.asmx - XML Web Service files with classes and methods

.aspx - ASP.NET Web forms file that can contain Web
controls and other business logic
.axd - trace-viewer rules, typically Trace.axd

.browser - browser definition files used to identify the
enabled features of the client browser

.compile - precompiled stub files that points to the
appropriate assembly (e.g for .aspx, .ascx, .master)

.cs, .jsl, .vb - class source-code files

Web Site File Types cont.

.css - style sheet files

.csproj, .vbproj, .vjsproj, .sln - Visual Studio
project and solution files

.disco, .wvsdisco - XML Web Services Discovery files

.d11 - compiled class library files (alternatively source code
for classes can be put in the App Code subdirectory)

.licx, .webinfo - licence files

.master - master page files

.mdb, .1ldb - Access database files

.mdf - SQL Server database files

.resources, .resx — resource files

. sitemap - site-map file with the structure of the Web site
.skin - skin files used to determine display formatting

Specifying Paths for Resources

Client elements

Server controls

<asp:image runat="server" id="Imagel"
ImageUrl="~/Images/SampleImage. jpg" />

The HttpRequest .MapPath () method returns the
complete physical path for a virtual path

String rootPath = Server.MapPath("~");

http://www.contoso.com/MyApplication/MyPages/Default.aspx

C:\inetpub\wwwroot\MyApplication

Results of HttpRequest properties:

ApplicationPath (root path of the current application)

/

CurrentExecutionFilePath (correct also after redirection in
server code)

/MyApplication/MyPages/Default.aspx

FilePath (virtual path of the current request)
/MyApplication/MyPages/Default.aspx

Path (includes the PathInfo trailer)
/MyApplication/MyPages/Default.aspx
PhysicalApplicationPath (physical path of the application's root)
C:\inetpub\wwwroot\

PhysicalPath (physical path of the requested URL)
C:\inetpub\wwwroot\MyApplication\MyPages\default.aspx

ASP.NET Application Life Cycle

User requests an application resource from the Web server

ASP.NET receives the first request for the application

= ASP.NET compiles the top-level items in the application if
required, including application code in the App Code folder

ASP.NET core objects are created for each request
® HttpContext, HttpRequest, and HttpResponse
An HttpApplication object is assigned to the request

= The application is started by creating an instance of the
HttpApplication class, this instance is used for all requests

The request is processed by the HttpApplication
pipeline

Key Members of HttpContext Class

ApplicationInstance (type: HttpApplication)

PreviousHandler (HttpHandler) — an instance of the

handler that rendered the previous page (used in cross-page
postbacks); it is exposed at the page level as the
PreviousPage property

Request (HttpRequest) — the request object
Response (HttpResponse) — the response object
Server (HttpServerUtility) — a few useful methods
Application (type: HttpApplicationState) — stores
application specific data, shared for all users

Session (HttpSessionState) — session of the user

Profile (HttpProfileBase) — personalisation data
Cache (Cache) — the ASP.NET cache object

ASP.NET

20

Krzysztof Mossakowski

Pages

http://www.mini.pw.edu.pl/~mossakow

ASP.NET

Code-Inline Model

21

| <%@ Page Language="C#"%>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.0rg/TR/xhtmll/DTD/xhtmll-transitional.dtd">
<script runat='"server">
protected void Buttonl Click (object sender, EventArgs e)

{
Labell.Text = "Button pushed";

}
</script>
<html xmlns="http://www.w3.0rg/1999/xhtml" >
<head runat="server">

<title></title>

</head>

<body>
<form id="forml" runat="server'">
<div>

<asp:Button ID="Buttonl" runat="server" onclick="Buttonl Click"
Text="Button" />
<asp:Label ID="Labell" runat="server" Text="Label"></asp:Label>
</div>
</form>
</body>
</html>

ASP.NET 22

Code-Behind Model

<%@ Page Language="C#" AutoEventWireup="true"
CodeBehind="WebForml.aspx.cs" Inherits="TespApp.WebForml" %>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.0rg/TR/xhtmll/DTD/xhtmll-transitional.dtd">

<html xmlns="http://www.w3.0rg/1999/xhtml" >

<head runat="server">

<title></title>

</head>

<body>
<form id="forml" runat="server'">
<div>

<asp:Button ID="Buttonl" runat="server" onclick="Buttonl Click" Text="Button" />
<asp:Label ID="Labell" runat="server" Text="Label"></asp:Label>
</div>

</form> using System;
</body> using System.Web;
</html> using System.Web.UI;
using System.Web.UI.WebControls;
namespace TespApp {
public partial class WebForml : System.Web.UI.Page {
protected void Buttonl Click (object sender, EventArgs e) {
Labell.Text = "Button clicked";
}
}
}
Krzysztof Mossakows '

ASP.NET 23

ASP.NET Directives

<%@ Page Language="C#" AutoEventWireup="true"
CodeBehind="WebForml.aspx.cs" Inherits="CodeInline.WebForml" %>

<%@ Master Language="C#" AutoEventWireup="true"
CodeBehind="Sitel .master.cs" Inherits="CodeInline.Sitel" %>

<%@ Control Language="C#" AutoEventWireup="true"
CodeBehind="WebUserControll.ascx.cs"
Inherits="TestApp.WebUserControll" %>

Directives are used to pass optional settings to the ASP.NET
pages and compilers

Directives are typically located at the top of the appropriate
file though that is not a strict requirement

Krzysztof Mossakowski http://www.mini.pw.edu.pl/~mossakow

List of Directives

Application - application-specific attributes

Assembly - links an assembly to the application or page
Control - contained in user control files

Implements - @ COM interface implemented by the page

Import - imports a namespace into a page, user control, or application,

making all of the classes and namespaces of the imported namespace
available

Master - identifies a page file as being a master page

MasterType - assigns a class name to the Master property of the page
OutputCache - controls output caching for a page or user control

Page - attributes for the page parser and compiler specific

Reference - indicates that another page or user control should be
compiled and linked to the current page

Register - associates aliases with namespaces (used in custom server
controls and user controls)

Common Page Directive Attributes

AutoEventWireup - enables or disables page events being

automatically bound to methods that follow the naming convention
Page_event (the default is true)

Buffer - enables or disables the HTTP response buffering

ClientTarget - targets the user agent that server controls should
render content for

CodeFile - used by Visual Studio to indicate the name of the code-
behind file

Debug - enables or disables compiling with debug symbols (the default is
false)

Description - text description of the page; ignored by the parser

EnableSessionState - enables, disables, or makes SessionState
read-only (the default is true)

EnableViewState - enables or disables maintenance of view state
across page requests (the default is true)

Common Page Directive Attributes cont.

ErrorPage - targets URL for redirection if an unhandled page exception
oCccurs

Inherits - name of the code-behind or other class
Language — the programming language used for in-line code

SmartNavigation - indicates support for smart navigation by the

browser, which enables scroll position on a page to survive postbacks (the
default is £false)

Src - relative or fully qualified filename containing the code behind class
Trace - enables or disables tracing (the default is false)

TraceMode - indicates how trace messages are to be displayed
Transaction - indicates whether transactions are supported on the
page

ValidateRequest - if true (the default) all input data is validated
against a hard-coded list of potentially dangerous values

ASP.NET Page Life Cycle

A page request
Start - page properties are set (e.g. Request, Response,
IsPostBack)

A page initialization - controls on the page are available and each
control's UniqueID property is set

Load - if the current request is a postback, control properties are loaded
with information recovered from view state and control state

Validation - the validate () methods of every event handler is called ,
which set the Isvalid property of individual validation controls and of
the page

Postback event handling - if the request is a postback, any event
handlers are called

Rendering — saving view state to the page, rendering each control to the
OutputStream Of the page's Response property

Unload — unloading the page's properties, final cleanup

| Determine Pre-initalize Load personalization data 28
| Constructor postback mode Method: OnPrelnit [Initialize themes —l

v
Initialize
Methods: Onlnit, OninitComplete

'

Load page,
control and view state

Yes l
Pre-load by — l
Method: OnPreload [€ | Frocess postback data

No—| Send postback change notifications
\

Load ¥
(reate child controls | > | Method: OnLoad Yes Handle postback event
Method: RaisePostBackEvent

Load complete
Method: OnLoadComplete |

l

PreRender
Method: OnPreRender, OnPreRenderComplete

.

Save personalization, control, view and page state

A

» Render
— Method: Render

v

Unload
Method: OnUnload

(reate child controls

Krzysztof Mossakowski

ASP.NET 29

Typical Use of Page Events

Page PrelInit
m Use the IsPostBack property to determine whether this is the first
time the page is being processed
m Create or re-create dynamic controls
m Set a master page dynamically
m Set the Theme property dynamically
= Read or set profile property values

= Do not set controls properties as their values might be overwritten in
the next stage

Page Init

m Read or initialize control properties
Page InitComplete

Page PreLoad
Page Load
= Read and update control properties

Krzysztof Mossakowski http://www.mini.pw.edu.pl/~mossakow

Typical Use of Page Events cont.

Page LoadComplete

Control events
m If the page contains validation controls, check the Isvalid property

of the page and of individual validation controls before performing any
processing

= Handle the specific event, such as a Button control's Click event
Page PreRender

= Make final changes to the contents of the page

Page PreRenderComplete

Page Unload

= Perform final cleanup work (e.g. close open files and database
connections, finish logging or other request-specific tasks)

= Do not make any changes to the response stream (it will throw an
exception)

Postbacks

ASP.NET pages typically post back to themselves in order to
process events (such as a button-click event)

= For this reason, you must differentiate between posts for the
first time a page is loaded by the end user and postbacks

A postback — a posting back to the same page

= A postback contains all the form information collected from the
initial page
The IsPostBack property can be used to check whether a

request is the first instance for a particular page or a
postback from the same page

Cross-Page Posting

Posting to another page and dealing with the source page's
control values on that page

= Controls from the first page can be found in source code of the
second page using the PreviousPage.FindControl ()
method

= All public properties of the first page are available for the
second page

= The second page can check the IsCrossPagePostBack
property

<asp:Textbox ID="TextBoxl" runat="server'"></asp:Textbox>

<asp:Button ID="Buttonl" runat="server" OnClick="Buttonl Click"
Text="Submit page to itself" />

<asp:Button ID="Button2" runat="server" PostBackUrl="WebForm2.aspx"
Text="Submit page to Page2.aspx" />

TextBox tb = (TextBox)PreviousPage.FindControl ("TextBoxl") ;
Labell.Text = tb.Text;

Moving to Another Page

The Hyperlink control navigates directly to the location
contained in the NavigateUrl property of the control
without a postback to the server

The HttpServerUtility.Transfer () method takes an

URL of an .aspx or .html page as a string argument and posts
back to the server

= [t raises the ThreadAbortException

The HttpResponse .Redirect () method is the
programmatic equivalent of a Hyperlink

= It is a completely new server request, it forces complete
authentication and authorization

Cross-page posting

Page Compilation

The first request to the page:
1. The parser creates the class file in the language of the page

2. The class is compiled into a DLL and written to the disk of the
Web server

3. The DLL is instantiated and processed
4. Qutput is generated

The next request:

1. The DLL is instantiated and processed
2. Output is generated

Changes made on the page will cause recompilation when
the page is requested again

In ASP.NET 2.0 a special tool for full precompilation was
introduced

http://[host] : [port]/[Application Name]/precompile.axd

The Global.asax File

Global.asax (the Global Application Class file) is used by

the application to hold application-level events, objects, and
variables

Events available in this file:

Application_ Start
Session_Start

Application BeginRequest - triggered before each
request

Application AuthenticateRequest - triggered for each
request, enables to set up custom authentication
Application Error

Session_End

Application End

Commonly Used Page Properties

Application - reference to the Application object
Cache - the Cache object of the application
ClientQueryString - the query string portion of the URL
Controls - a reference to the collection of controls
ErrorPage - the name of the page for error redirecting

IsCrossPagePostBack - if true, this page called another page using
the cross-page postback

IsPostBack - if true, this page is being loaded in response to a client
post

IsValid - if true, validation succeeded for all the controls

MaintainScrollPositionOnPostback - if true, the browser

positioning of the page will be preserved across postbacks (the default is
false)

Master - retrieves a reference to the master page for the page
MasterPageFile - the filename of the master page
PreviousPage - retrieves a reference to the previous page

ASP.NET

37

Krzysztof Mossakowski

Controls

http://www.mini.pw.edu.pl/~mossakow

Types of Web Controls

HTML controls
= The original controls available to any HTML page
HTML server controls
m Based on the original HTML controls but enhanced to enable server-
side processing
ASP.NET server controls (aka Web server controls)

= Rich and flexible server-side controls, integrated into the ASP.NET
programming mode

m These controls are rendered to the client as HTML code and provide
the same functionality as HTML server controls and more

= Can be declared in a content file or programmatically instantiated and
manipulated in .NET assemblies

User controls and custom controls
m Controls created by developers

ASP.NET

39

Krzysztof Mossakowski

Controls
HTML Server Controls

http://www.mini.pw.edu.pl/~mossakow

HTML Server Controls

Normal HTML controls such as <h1l>, <a>, and <input> are
not processed by the server, but are sent directly to the
browser for display

= They can be exposed to the server and made available for
server-side processing by turning them into HTML server

controls

= A normal HTML control can be converted into an HTML server
control by adding the runat parameter

<input type=

"text"

size="40">

<input type=

"text"

id="BookTitle" size="40" runat="server">

ASP.NET 41

Usage of the HTML Server Controls

Converting existing HTML pages to run under ASP.NET

= It is enough to change the extension of the file to .aspx
= The runat attribute must be added to take advantage of

server-side processing (including automatic maintenance of the
state)

Using HTML tables for the table layout

= For static tables commonly used to lay out the page, server-side
processing is unnecessary

Krzysztof Mossakowski http://www.mini.pw.edu.pl/~mossakow

HTML Server Controls Classes

<head> - HtmlHead

<input> - HtmlInputButton, HtmlInputCheckbox,
HtmlInputFile, HtmlInputHidden, HtmlInputlImage,
HtmlInputPassword, HtmlInputRadioButton,
HtmlInputReset, HtmlInputSubmit, HtmlInputText

 - HtmlImage

<link> - HtmlLink
<textarea> - HtmlTextArea
<a> - HtmlAnchor
<button> - HtmlButton
<form> - HtmlForm
<table> - HtmlTable

<td>, <th> - HtmlTableCell
<tr> - HtmlTableRow
<title> - HtmlTitle
<select> - HtmlSelect
HtmlGenericControl

Server-Side and Client-Side Processing

Server-side processing (the heart of ASP.NET) needs a
postback to the server

= Even for intranet applications connected to the server with a
high-speed local network connection, this introduces a
noticeable delay often unacceptable

Client-side processing can greatly enhance the user
experience

= [t provides nearly instantaneous response to the user’s actions
Some ASP.NET server controls use client-side scripting to

provide responses to user actions without posting back to the
server (e.g. validation controls)

= ASP.NET provides client-side scripts for these controls

ASP.NET 44

<script language="javascript'>

| function ButtonTest () {
alert ("Button clicked - client side processing");

}

function DoChange () {
document.getElementById ("btnSave'") .disabled = false;

}
</script>

<input id="btnHTML" runat="server" type="button" wvalue="HTML Button"
onclick="javascript:ButtonTest () ;"
onserverclick="btnHTML ServerClick" />

<asp:Button ID="btnServer" runat="server" Text="ASP.NET Button"
OnClientClick="javascript:ButtonTest();" />

<input id="txtHTML" type="text" runat="server"
onchange="javascript:DoChange() ;" />

<asp:TextBox ID="TextBoxl" runat="server"
onchange="javascript:DoChange () ;" />

<asp:Button ID="btnSave" runat="server" Text="Save" Enabled="false" />

protected void btnHTML ServerClick(object sender, EventArgs e) {
txtHTML.Value = "An HTML server control";

}

Krzysztof Mossakowski http://www.mini.pw.edu.pl/~mossakow

ASP.NET 45

Controls
ASP.NET Server Controls

Krzysztof Mossakowski http://www.mini.pw.edu.pl/~mossakow

ASP.NET Server Controls Advantages

The ability to have the page automatically maintain the state
of the control

ASP.NET detects the level of the target browser, the
appropriate HTML is generated for each browser

The use of a compiled language instead of an interpreted
script results in better performance

The ability to bind to a data source

Events can be raised by controls on the browser and easily
handled by code on the server

ASP.NET 47

Categories of ASP.NET Server Controls

Basic controls

Advanced controls

Validation controls

AJAX controls

Data source controls

Data view controls (data-bound controls)
Web parts controls

Site navigation controls

Login and security controls

Krzysztof Mossakowski http://www.mini.pw.edu.pl/~mossakow

ASP.NET 48

Basic Controls
Label, Literal

TextBox

Button, LinkButton, ImageButton

HyperLink

DropDownList, ListBox

CheckBox, RadioButton

CheckBoxList, RadioButtonList, BulletedList,
Image, ImageMap

Krzysztof Mossakowski http://www.mini.pw.edu.pl/~mossakow

I
ASP.NET 49

Advanced Controls
Table

Calendar
AdRotator
FileUpload
Panel

MultiView, View
Wizard
PlaceHolder
HiddenField
Substitution
Xml

Krzysztof Mossakowski http://www.mini.pw.edu.pl/~mossakow

ASP.NET

50

Krzysztof Mossakowski

Controls
Validation Controls

http://www.mini.pw.edu.pl/~mossakow

Validation Controls

Validation controls provide an easy-to-use mechanism for all
common types of standard validation plus ways to provide
custom-written validation

Validation controls allow to customize how error information
is displayed to the user

They can work with any controls put on the ASP.NET Web
page, including both HTML and ASP.NET server controls

Controls:
RequiredFieldValidator
CompareValidator
RangeValidator
RegularExpressionValidator
CustomValidator

ValidationSummary

Client-Side and Server-Side Validation

Client-side validation
= Quick and responsive for the end user

= If something is wrong with the form, using client-side validation
ensures that the end user knows this as soon as possible

= It can be easily hacked or disabled, because client-side
validation code is written in JavaScript and is fully visible for the
end user
Server-side validation
= Requires a postback to the server
= Much slower, but definitely more secure
The best approach is always to perform client-side validation
first and then, after the form passes and is posted to the
server, to perform the validation checks again using server-
side validation

Validation Controls

Validation controls provide an easy-to-use mechanism for all

common types of standard validation plus ways to provide
custom-written validation

Validation controls allow to customize how error information
is displayed to the user

They can work with any controls put on the ASP.NET Web
page, including both HTML and ASP.NET server controls

Client-Side and Server-Side Validation

Client-side validation
= Quick and responsive for the end user

= If something is wrong with the form, using client-side validation
ensures that the end user knows this as soon as possible

= It can be easily hacked or disabled, because client-side
validation code is written in JavaScript and is fully visible for the
end user
Server-side validation
= Requires a postback to the server
= Much slower, but definitely more secure
The best approach is always to perform client-side validation
first and then, after the form passes and is posted to the
server, to perform the validation checks again using server-
side validation

ASP.NET Validation Server Controls

ASP.NET performs browser detection when generating the
ASP.NET page

= If the browser can support the JavaScript that ASP.NET can
send its way, the validation occurs on the client-side

= It can be turned off using the EnableClientScript property

Even if the client-side validation is initiated on a page,
ASP.NET still performs the server-side validation when it

receives the submitted page
Custom validation controls can be created

Validation occurs in response to an event (in most cases, it is
a button click event)

m The CausesValidation property of the Button,
LinkButton, and ImageButton server controls is set to

true by default

Validation Controls

RequiredFieldValidator

m Ensures that the user does not skip a form entry field
CompareValidator

= Allows for comparisons between the user’s input and another item
using a comparison operator (equals, greater than, less than, etc.)

RangeValidator

= Checks the user’s input based upon a range of numbers or characters
RegularExpressionValidator

= Checks that the user’s entry matches a pattern defined by a regular
expression (useful for e-mail addresses or phone numbers)

CustomValidator

m Checks the user’s entry using custom-coded validation logic
ValidationSummary

m Displays all the error messages from the validation controls in one
specific spot on the page

Validation Groups

The validationGroup property allows to separate the
validation controls into groups

= It allows to activate only the required validation controls when
the end user clicks a button on the page

<asp:Button ID="Buttonl" Runat="server" Text="Login"
ValidationGroup="Login" />

<asp:RequiredFieldValidator ID="RequiredFieldValidatorl"
Runat="server"
ErrorMessage="* You must submit a username!"
ControlToValidate="TextBox1l"
ValidationGroup="Login">
</asp:RequiredFieldValidator>
<asp:RequiredFieldValidator ID="RequiredFieldValidator2"
Runat="server"
ErrorMessage="* You must submit a password!"
ControlToValidate="TextBox2"
ValidationGroup="Login">
</asp:RequiredFieldValidator>

ASP.NET AJAX
Asynchronous JavaScript and XML

AJAX Overview

AJAX includes some new client-script libraries to facilitate the
asynchronous calls back to the server

m Instead of the browser simply rendering streams of HTML and
executing small custom-written script blocks

AJAX also includes some basic server-side components to
support these new asynchronous calls coming from the client

ASP.NET

ASP.NET AJAX

60

Server Side
ASP.NET Extensions for AJAX

Client Side
The AJAX Library

Components
Nonvisual components
Behaviours, Controls

Browser Compatibility

Support for browsers:

Microsoft Internet Explorer,

Mozilla Firefox, Opera, Apple Safari

Networking

Asynchronous requests,

XML and JSON Serialization,
Web and Application Services

Core Services
JavaScript, Base Client
Extensions, Type System,
Events, Serialization

Krzysztof Mossakowski

Scripting
Localization, Globalization,
Debugging, Tracing

Web Services

Proxy Generation,

Page Methods,

XML and JSON Serialization

Application Services
Authentication and profile support

Server Controls
ScriptManager, Update Panel,
Update Progress, Timer

http://www.mini.pw.edu.pl/~mossakow

Reasons to Use AJAX

AJAX improves the overall efficiency of a web site by performing
parts of a Web page's processing in the browser when appropriate

m ASP.NET’s AJAX support includes a number of scripts so that you can
get a lot of browser-based efficiency by simply using a few server-side
controls

AJAX introduces UI elements usually found in desktop applications
to a Web site

AJAX introduces partial-page updates
AJAX is supported by most popular browsers

AJAX introduces a huge number of new capabilities using the
extender control

AJAX improves on ASP.NET's forms authentication and profiles and
personalization services

ASP.NET Server Side Controls

ScriptManager

= It manages script resources for the page

m Its primiary action is to register the AJAX Library script with the page
so the client script may use type system extensions

m It makes possible partial-page rendering and supports localization as
well as custom user scripts.

= Any ASP.NET site wishing to use AJAX must include an instance of the
ScriptManager control on any page using AJAX functionality

ScriptManagerProxy

= Nested components such as content pages and User controls require
this control to manage script and service references to pages that
already have a ScriptManager control

= This is most notable in the case of master pages: there should be the
ScriptManager control on the master page and the
ScriptManagerProxy controls on the content pages

ASP.NET Server Side Controls cont.

UpdatePanel

m It supports partial page updates by tying together specific server-side
controls and events that cause them to render

m It causes only selected parts of the page to be refreshed instead of
refreshing the whole page

UpdateProgress

m It coordinates status information about partial-page updates as they
occur within UpdatePanel controls

m [t supports intermediate feedback for long-running operations
Timer

m It will issue postbacks at defined intervals

= Although it will perform a normal postback (posting the whole page),
it is especially useful when coordinated with the UpdatePanel

control to perform periodic partial-page updates

ASP.NET AJAX Control Toolkit

The ASP.NET AJAX Control Toolkit is a shared source project
built on top of the Microsoft ASP.NET AJAX framework

It is a collection of components encapsulating AJAX’s
capabilities
N

= Accordion, AlwaysVisibleControl, Animation, AsyncFileUpload, AutoComplete, Calendar,
CascadingDropDown, CollapsiblePanel, ColorPicker, ComboBox, ConfirmButton,
DragPanel, DropDown, DropShadow, DynamicPopulate, FilteredTextBox, HoverMenu,
HTMLEditor, ListSearch, MaskedEdit, ModalPopup, MultiHandleSlider,
MutuallyExclusiveCheckBox, NoBot, NumericUpDown, PagingBulletedList,
PasswordStrength , PopupControl, Rating, ReorderList, ResizableControl,
RoundedCorners, Seadragon, Slider, SlideShow, Tabs, TextBoxWatermark,
ToggleButton, UpdatePanelAnimation, ValidatorCallout

It also provides a powerful software development kit for
creating custom controls and extenders

http://www.asp.net/ajax/ajaxcontroltoolkit/
http://www.asp.net/ajax/ajaxcontroltoolkit/
http://www.asp.net/ajax/ajaxcontroltoolkit/
http://www.asp.net/ajax/ajaxcontroltoolkit/
http://www.asp.net/ajax/ajaxcontroltoolkit/
http://www.asp.net/ajax/ajaxcontroltoolkit/
http://www.asp.net/ajax/ajaxcontroltoolkit/
http://www.asp.net/ajax/ajaxcontroltoolkit/samples/
http://www.asp.net/ajax/ajaxcontroltoolkit/samples/
http://www.asp.net/ajax/ajaxcontroltoolkit/samples/
http://www.asp.net/ajax/ajaxcontroltoolkit/samples/
http://www.asp.net/ajax/ajaxcontroltoolkit/samples/
http://www.asp.net/ajax/ajaxcontroltoolkit/samples/
http://www.asp.net/ajax/ajaxcontroltoolkit/samples/
http://www.asp.net/ajax/ajaxcontroltoolkit/samples/
http://www.asp.net/ajax/ajaxcontroltoolkit/samples/

ASP.NET

65

Krzysztof Mossakowski

Data Binding

http://www.mini.pw.edu.pl/~mossakow

ASP.NET Data Access

The System.Data (ADO.NET) and System.Xml
namespaces can be used to write code to access data

ASP.NET allows to perform data binding declaratively, no
code is required for the most common data scenarios:

= Selecting and displaying data

= Sorting, paging, and caching data

= Updating, inserting, and deleting data

= Filtering data using run-time parameters

= Creating master-detail scenarios using parameters
Two types of server controls participate in the declarative
data binding model:

= Data source controls

= Data-bound controls

Data Source Controls

Data source controls are ASP.NET controls that manage the
tasks of connecting to a data source, reading and writing data
= They do not render any user interface

= They act as an intermediary between a particular data store and
other controls on the ASP.NET Web page

= They enable rich capabilities for retrieving and modifying data,
including querying, sorting, paging, filtering, updating, deleting,
and inserting

Data Source Controls

SglDataSource - for any SQL database; it returns data as
DataReader Or DataSet objects

AccessDataSource - specialized version of the
SqlDataSource control - only for Microsoft Access

LingDataSource - for LINQ to SQL
EntityDataSource (3.5 SP1) - for Entity Framework
XmlDataSource - for data stored in XML files

SiteMapDataSource - special data source for a definition
of web site's structure; used by navigational controls
ObjectDataSource - for special, custom logic of loading
data (e.g. from services)

Data-Bound Controls

Gridview — displays tabular data

DetailsView — displays a single record from a data source (each
data row represents a field in the record)

FormView — WOrks like the DetailsView, but it displays the data in
custom templates

Repeater — produces a list of individual items

DataList — displays rows of database information in customizable
format

ListView — displays data in a format defined by using templates
and styles

= it is similar to the DatalList and Repeater controls, but it is
possible to allow the user to modify displayed data without code

DataPager — is used to page data and to display navigation
controls for data-bound controls (e.g. the ListView control)

ASP.NET

70

Krzysztof Mossakowski

Web Parts

http://www.mini.pw.edu.pl/~mossakow

Web Parts

ASP.NET Web Parts is an integrated set of controls for
creating Web sites

Web Parts enable end users to modify the content,

appearance, and behaviour of Web pages directly from a
browser

= The modifications can be applied to all users on the site or to
individual users

= When a user modifies pages and controls, the settings can be
saved to retain the user's personal preferences across future
browser sessions (using the personalisation)

ASP.NET 72

Possibilities for Users

Web Parts aIIOW end users to: Column Options

= Personalise the page content Z::f EE :Sz:m;
= Personalise the page layout soel,wa & Mo coumnien
= Export and import controls 5 . LT
= Create connections between R n:h;:;a:m’:r
controls Fall Follage = Flight Arrivals « Scenic Drives
= Manage and personalise -
site-level settings Neather
I e

Krzysztof Mossakowski http://www.mini.pw.edu.pl/~mossakow

WebParts Controls

WebPartManager, ProxyWebPartManager
WebPartZone
CatalogZone

m DeclarativeCatalogPart
m PageCatalogPart

® ImportCatalogPart
EditorZone

m AppearanceEditorPart

® BehaviorEditorPart

® LayoutEditorPart

m PropertyGridEditorPart
ConnectionsZone

ASP.NET

74

Krzysztof Mossakowski

Site Navigation

http://www.mini.pw.edu.pl/~mossakow

ASP.NET 75

Site Navigation

Site navigation features can be used to provide a consistent
way for users to navigate the Web site
= It enables to store links to all pages in a central location and

render these links in lists or navigation menus on each page by
including a specific Web server control

Krzysztof Mossakowski http://www.mini.pw.edu.pl/~mossakow

Features of Site Navigation

Site maps can be used to describe the logical structure of the
site
ASP.NET controls can be used to display navigation menus on
the Web pages

= The navigation menu is based on the site map

The site navigation can be controlled programmatically

Access rules can be configured that display or hide a link in
the navigation menu

Custom site-map providers can be created
= For example, a database where link information is stored

Site Maps

By default, the site navigation system uses an XML file that
contains the site hierarchy

= The site navigation system can be configured to use alternative
data sources

= The simplest way to create a site map is to create an XML file
named Web.sitemap that organizes the pages in the site

hierarchically

More than one site-map file or provider can be used to
describe the navigation structure of the entire Web site

Example of the Web.sitemap file

<siteMap>
<siteMapNode title='"Home"
description="Home"
url="~/default.aspx">
<siteMapNode title="Products"
description="Our products"
url="~/Products.aspx">
<siteMapNode title="Hardware"
description="Hardware choices"
url="~/Hardware.aspx" />
<siteMapNode title="Software"
description="Software choices"
url="~/Software.aspx" />

</siteMapNode>
<siteMapNode title="Services"
description="Services we offer"
url="~/Services.aspx">
<siteMapNode title="Training"
description="Training classes"
url="~/Training.aspx" />
<siteMapNode title="Support"
description="Supports plans"
url="~/Support.aspx" />
</siteMapNode>
</siteMapNode>
</siteMap>

SiteMapPath Server Control

The siteMapPath control
creates navigation functionality

: Products : Hardware

on the Web page

This is a linear path defining where the end user is in the
navigation structure

Useful properties:

PathSeparator — any string

PathSeparatorStyle — allows to apply an image as a
separator

PathDirection — RootToCurrent, CurrentToRoot
ParentLevelsDisplayed — number of visible parents
ShowToolTips

TreeView Server Control

To present a Web site as a tree:
1. Add a siteMapDataSource control

2. Add a TreeView control and set its
DataSourceID property to the
SiteMapDataSource Object

Features of the TreeView control:
= Automatic data binding

Site navigation support

Highly customizable formatting

= Hame
= Products

m Hardware:
m Software

=l Services

B Training
B Support

Programmatic access to the TreeView object model

Node population through client-side callbacks to the server
The ability to display a checkbox next to each node

Menu Server Control

To display a site map asa menu, ...c» producie »
the Menu control must be added Training

and its DataSourceID property | Support
must be set to an existing object Services we offer
of SiteMapDataSource class

The appearance and behaviour of the Menu control is
customizable

The Menu control can be bound to the database data

Available events:

®m DataBinding, DataBound, Disposed, Init, Load,
MenulItemClick, MenultemDataBound, PreRender,
Unload

ASP.NET 82

SiteMap Data Provider

The siteMapDataSource control is a data source to the
site map data that is stored by the site map providers that
are configured for the Web site

Useful properties:

ShowStartingNode (true by default)
StartFromCurrentNode (false by default)
StartingNodeOffset (0 by default)
StartingNodeUrl

Krzysztof Mossakowski http://www.mini.pw.edu.pl/~mossakow

ASP.NET

83

Krzysztof Mossakowski

Master Pages

http://www.mini.pw.edu.pl/~mossakow

Master Pages

ASP.NET master pages allow to create a consistent layout for
the pages in an application

A single master page defines the look and feel and standard
behaviour that you want for all of the pages (or a group of
pages) in your application

When users request the content pages, they merge with the

master page to produce output that combines the layout of
the master page with the content from the content page

Advantages of Master Pages

They allow you to centralize the common functionality of your
pages so that you can make updates in just one place

They make it easy to create one set of controls and code and
apply the results to a set of pages

= For example, you can use controls on the master page to create
a menu that applies to all pages

They give you fine-grained control over the layout of the final
page by allowing you to control how the placeholder controls
are rendered

They provide an object model that allows you to customize
the master page from individual content pages

.master Files

A master page is an ASP.NET file with the extension
.master with a predefined layout
= It can include static texts, HTML elements, and server controls

= The master page is identified by a special @Master directive
that replaces the @rPage directive

<%@ Master Language="C#" CodeFile="MasterPage.master.cs"
Inherits="MasterPage" %>

= The master page also contains all of the top-level HTML
elements for a page, such as html, head, and form

Replaceable Content Placeholders

The master page also includes one or more
ContentPlaceHolder controls

= They define regions where replaceable content will appear
= The replaceable content is defined in content pages

%@ Master Language="C#" %>
<!'DOCTYPE html PUBLIC "-//W3C//DTD XHTML
1.1//EN" "http://www.w3.0rg/TR/xhtmlll/DTD/xhtmlll.dtd">
<html xmlns="http://www.w3.0rg/1999/xhtml" >
<head runat="server" >
<title>Master page title</title>
</head>
<body>
<form id="forml" runat="server">
<table>
<tr>
<td><asp:contentplaceholder id="Main"
runat="server" /></td>
<td><asp:contentplaceholder id="Footer"
runat="server" /></td>
</tr>
</table>
</form></body></html>

Content Pages

Content pages are ASP.NET pages (.aspx files and, optionally,
code-behind files) that are bound to a specific master page

<% @ Page Language="C#" MasterPageFile="~/Master.master"
Title="Content Page 1" %>
<asp:Content ID="Contentl" ContentPlaceHolderID="Main"
Runat="Server">
Main content.
</asp:Content>

<asp:Content ID="Content2" ContentPlaceHolderID="Footer"
Runat="Server" >

Footer content.
</asp:content>

Run-time Behaviour of Master Pages

Users request a page by typing the URL of the content page
When the page is fetched, the @page directive is read

= If the directive references a master page, the master page is
read as well

= If this is the first time the pages have been requested, both
pages are compiled

The master page with the updated content is merged into
the control tree of the content page

The content of individual Content controls is merged into
the corresponding ContentPlaceHolder control in the

master page
The resulting merged page is rendered to the browser

Paths to External Files

The page created by merging the content page and the
master pages is run in the context of the content page
= The HttpRequest.CurrentExecutionFilePath property

called from both the content page or the master page returns
the path representing the location of the content page

ASP.NET can modify the URLs used by the master page, if:

= The URL is a property of a server control

= The property is marked with the UrlPropertyAttribute
ASP.NET cannot modify URLs on elements that are not server
controls

= It is recommended to use a server control when working with
elements on master pages

Scoping Master Pages

Content pages can be attached to a master page at three
levels:

= The page level — by using the MasterPageFile parameter of
the @pPage directive

<%Q@ Page Language='"C#" MasterPageFile="MySite.Master %>

= The application level — by making a setting in the pages element
of the application's configuration file (Web.config)

<pages masterPageFile="MySite.Master" />

= The folder level — by making the same change as for the
application level but in the web . config file located in the

folder

Nested Master Pages

Master pages can be nested, with one master page
referencing another as its master
= Nested master pages allow to create componentized master
pages
A child master page has the .master extension

= [t typically contains content controls that are mapped to content
placeholders on the parent master page

= [t also has content placeholders of its own to display content
supplied by its own child pages

Accessing Members of the Master Page

To provide access to members of the master page, the Page
class exposes a Master property

CompanyName .Text = Master.CompanyName;

To access members of a specific master page from a content

page, a strongly typed reference to the master page can be
created by using a @MasterType directive

<%@ Page masterPageFile="~/MasterPage.master"$%>
<%@ MasterType virtualPath="~/MasterPage.master"$%>

Getting Values of Controls

Controls contained in @ ContentPlaceHolder control are

not directly accessible (they are protected)
= The FindControl () method can be used to locate specified

controls on the master page

ContentPlaceHolder mpContentPlaceHolder;
mpContentPlaceHolder = (ContentPlaceHolder)Master.FindControl (

"ContentPlaceHolderl") ;

if (mpContentPlaceHolder !'= null) {

TextBox mpTextBox = (TextBox)
mpContentPlaceHolder.FindControl ("TextBox1l") ;

if (mpTextBox !'= null) ({
mpTextBox.Text = "TextBox found!";

}

Label mpLabel = (Label)Master.FindControl ("masterPageLabel") ;

if (mpLabel !'= null) {
Labell .Text = "Master page label = " + mpLabel.Text;

}

Getting Values of Controls cont.

A public property in the master page can be created to allow
to get or set the values of controls

public Image AnimalImage {
get { return this.Animal; }
set { this.Animal = value; }

}

<asp:Image ID="Animal"
runat="server"
ImageUrl="~/Images/Animal.gif" />

<%@ MasterType TypeName="SiteMasterPage" %>

protected void Page Load(object sender, EventArgs e) ({
Master.AnimalImage.ImageUrl = "~/images/procCS.gif";

}

ASP.NET 96

Attaching Master Pages Dynamically

A master page can be attached dynamically to a content page

= The master page must be assigned before pages are merged
= Typically, the preInit event is used

void Page PreInit (Object sender, EventArgs e) ({
this.MasterPageFile = "~/NewMaster.master";

}

Krzysztof Mossakowski http://www.mini.pw.edu.pl/~mossakow

Events in Master and Content Pages

Master page controls Init event
Content controls Init event

The master page Init event

The content page Init event

The content page Load event

The master page Load event
Content controls Load event

The content page PreRender event
The master page PreRender event
Master page controls PreRender event
Content controls PreRender event

Container-Specific Master Pages

ASP.NET allows to use multiple master pages within the

content page
= Depending on the viewing container used by the end user,
ASP.NET pulls the appropriate master file

= A list of available browsers is hosted at
C:\Windows\Microsoft.NET\Framework\v2.0 \

Config\Browsers
= New .browser files can be created

<%@ Page Language="VB"
MasterPageFile="~/main.master"
Mozilla:MasterPageFile="~/forMozilla.master"

Opera:MasterPageFile="~/forOpera.master" %>

ASP.NET

929

Krzysztof Mossakowski

Themes and Skins

http://www.mini.pw.edu.pl/~mossakow

Themes

A theme is a collection of property settings that allow to
define the look of pages and controls

= The look is applied consistently across pages in a Web
application, across an entire Web application, or across all Web
applications on a server

A theme is made up of a set of elements: skins, cascading
style sheets (CSS), images, and other resources
= At a minimum, a theme will contain skins

= When a .css file is put in the theme directory, it is applied
automatically as a part of the theme

Skins

A skin file has the .skin extension and contains property
settings for individual controls such as the Button, Label,
TextBox, Of Calendar controls

Control skin settings are like the control markup itself, but

contain only the properties you want to set as a part of the
theme

= The default skin automatically applies to all controls of the same

type

<asp:button runat="server"
BackColor="1lightblue" ForeColor="black" />

= A named skin is a control skin with the SkinID property set

= The named skin can be applied to a control by setting the
SkinID property of the control

Scoping Themes

Page themes

= A page theme is a theme folder with control skins, style sheets,
graphics files and other resources created in a subfolder of the
\App Themes folder in the Web site

m Each theme has a different subfolder

Global themes
= A global theme is a theme that can be applied to all Web sites
on a server
= Global themes are stored in the folder named \Themes that is
global to the Web server

m C:\WINDOWS\Microsoft.NET\Framework\v2.0. \
ASP.NETClientFiles\Themes

Applying Themes

Applying a theme to a Web site

<configuration>
<system.web>
<pages theme="ThemeName" />
</system.web>
</configuration>

Applying a theme to an individual page

<%@ Page Theme='"ThemeName" %>
<%@ Page StyleSheetTheme="ThemeName" %>

Applying a skin to a control

<asp:Calendar runat="server" ID="DatePicker"
SkinID="SmallCalendar" />

ASP.NET 104

Applying Themes Programmatically

Protected void Page Prelnit(object sender, EventArgs e) ({
switch (Request.QueryString|["theme"]) {
case "Blue":

Page.Theme = "BlueTheme";
break;

case "Pink":
Page.Theme = "PinkTheme";
break;

void Page PreInit (object sender, EventArgs e) ({
Calendarl.SkinID = "MySkin";

}

Krzysztof Mossakowski http://www.mini.pw.edu.pl/~mossakow

ASP.NET 105

Disabling Themes

Disabling a theme for a page

%@ Page EnableTheming="false" %>

Disabling a theme for a control

<asp:Calendar id="Calendarl" runat='"server"
EnableTheming="false" />

Krzysztof Mossakowski http://www.mini.pw.edu.pl/~mossakow

ASP.NET 106

The StyleSheetTheme Attribute

The Page.StyleSheetTheme attribute works the same as
the Theme attribute in that it can be used to apply a theme

to a page
The difference is visible when attributes are set locally on the
page within a particular control

= If the Theme attribute is used, the attributes are overridden

= If the StyleSheetTheme attribute is used, the attributes are
kept in place

Krzysztof Mossakowski http://www.mini.pw.edu.pl/~mossakow

Themes vs. CSS

Themes can define many properties of a control or page, not
just style properties

= For example, using themes, you can specify the graphics for a
TreeView control, the template layout of a Gridview control,

and so on
Themes can include graphics

Themes do not cascade the way style sheets do

= For example, by default, property values override local property
values unless you explicitly apply the theme as a style sheet
theme

Only one theme can be applied to each page — you cannot
apply multiple themes to a page, unlike style sheets where
multiple style sheets can be applied

ASP.NET 108

Personalisation

Krzysztof Mossakowski http://www.mini.pw.edu.pl/~mossakow

ASP.NET

ASP.NET Personalisation

The ASP.NET personalisation can make an automatic
association between the end user viewing the page and any
data points stored for that user

The personalisation properties that are maintained on a per-
user basis are stored on the server and not on the client

109

Krzysztof Mossakowski http://www.mini.pw.edu.pl/~mossakow

ASP.NET 110

Creating Personalisation Properties

Add the profile section to the Web. config file defining

all the properties that should be stored by the
personalisation engine

<configuration>
<system.web>
<profile>
<properties>
<add name="FirstName" />
<add name="LastName" />
<add name="LastVisited" />
</properties>
</profile>
<authentication mode="Windows" />
</system.web>
</configuration>

Krzysztof Mossakowski http://www.mini.pw.edu.pl/~mossakow

Creating Personalisation Properties cont.

When the profile is defined in the Web . config file,

properties of the profile can be accessed from the source
code

protected void Buttonl Click(object sender, EventArgs e) {
if (Page.User.Identity.IsAuthenticated) {
Profile.FirstName = TextBoxl.Text;
Profile.LastName = TextBox2.Text;
Profile.LastVisited = DateTime.Now.ToString() ;
Labell.Text = "Stored information includes:<p>" +
"First name: " + Profile.FirstName +
"
Last name: " + Profile.LastName +
"
Last visited: " + Profile.LastVisited;
} else {
Labell.Text = "You must be authenticated!";
}

myFirstName =
(string) Profile.PropertyValues["FirstName"] .PropertyValue;

ASP.NET

112

Groups of Personalisation Properties

<profile>

</profile>

<properties>
<add name="FirstName" />
<add name="LastName" />
<add name="LastVisited" />
<group name="MemberDetails">
<add name="Member" />
<add name="DateJoined" />
<add name="PaidDuesStatus" />
</group>
</properties>

Labell.Text = Profile.MemberDetails.DateJoined;

Krzysztof Mossakowski http://www.mini.pw.edu.pl/~mossakow

ASP.NET 113

Defining Types of Properties

By default, all properties are stored as type string

<properties>
<add name="FirstName" type="System.String" />
<add name="LastName" type="System.String" />
<add name="LastVisited" type="System.DateTime" />
<add name="Age" type="System.Integer" />
<add name="Member" type="System.Boolean" />
</properties>

Krzysztof Mossakowski http://www.mini.pw.edu.pl/~mossakow

Using Custom Types for Properties

serializelAs: [Serializable]

] public class Product ({
Binary private string PID;
ProviderSpecific private string CompanyProductName;
String

public ShoppingCart() ({}
XML public string ProductID ({
get { return PID; }
set { PID = wvalue; }
}
public string ProductName {
get { return CompanyProductName; }
set { CompanyProductName = value; }

<properties>
<add name="FirstName" type="System.String" />
<add name="LastName" type="System.String" />
<add name="Product" type="Product" serializeAs="Binary" />

</properties>

Anonymous Personalisation

By default, the anonymous personalisation is turned off
because it consumes database resources

<configuration>
<system.web>
<anonymousIdentification enabled="True" />
</system.web>
</configuration>

For an anonymous user, information is stored by default as a
cookie on the end user’s machine
= Additional information (the personalisation properties that you

enable for anonymous users) is stored in the specified data
store on the server

Settings of Anonymous Personalisation

Behaviour of the anonymous personalisation can be set up
using attributes of the anonymousIdentification section

in the configuration file
= The name of the cookie - cookieName
= The length of time the cookie is stored - cookieTimeout
= How the identifiers should be stored - cookieless
= UseUri — no cookie, id in the URL of the page
= UseCookies — using cookies (the default value)
m AutoDetect

= UseDeviceProfile — depending of the
HttpBrowserCapabilities setting

Using Anonymous Personalisation

An identifier of the user:
® Request.AnonymousId

Events:
® AnonymousIdentification OnCreate

® AnonymousIdentification OnRemove

Choosing properties of the anonymous personalisation:

<properties>
<add name="FirstName" type="System.String" />
<add name="LastName" type="System.String" />
<add name="LastVisited" type='"System.DateTime"
allowAnonymous="true" />
<add name="Age" type="System.Integer" />
<add name="Member" type="System.Boolean" />
</properties>

Personalisation Providers

The middle tier of the personalisation model, the
personalisation API layer, communicates with a series of
default data providers

= By default, Microsoft SQL Server Express Edition is used

<configuration>
<connectionStrings>
<clear />
<add name="LocalSglServer"
connectionString="data source=.\SQLEXPRESS;
Integrated Security=SSPI;
AttachDBFilename=|DataDirectory|aspnetdb.mdf;
User Instance=true"
providerName="System.Data.SqlClient" />
</connectionStrings>
</configuration>

= SQL Server 7.0 or later can be used

ASP.NET 119

ASP.NET SQL Server Setup Wizard

The ASP.NET SQL Server Setup Wizard is an easy-to-use tool
that facilitates setup of the SQL Server to work with the
personalisation framework

aspnet regsql.exe - there are two ways to set up the
database:

= Command-Line Tool
= GUI Tools
The aspnetdb database is created by the wizard

Krzysztof Mossakowski http://www.mini.pw.edu.pl/~mossakow

ASP.NET 120

Using Multiple Providers

<configuration>
<system.web>
<profile defaultProvider="AspNetSqlProvider">
<properties>
<add name="FirstName" />
<add name="LastName" />
<add name="LastVisited" />
<add name="Age" />
<add name="Member"
provider="AspNetSql2000Provider" />
</properties>
</profile>
</system.web>
</configuration>

Krzysztof Mossakowski http://www.mini.pw.edu.pl/~mossakow

ASP.NET 121

Membership and
Role Management

Krzysztof Mossakowski http://www.mini.pw.edu.pl/~mossakow

ASP.NET 122

Authentication and Authorization

The authentication

= Helps to verify that the user is, in fact, who the user claims to
be

= The application obtains credentials from a user and validates
those credentials against some authority

The authorization

= Limits access rights by granting or denying specific permissions
to an authenticated identity

Krzysztof Mossakowski http://www.mini.pw.edu.pl/~mossakow

Authentication Providers

There are 3 authentication providers built into ASP.NET
= Windows Authentication Provider

= Information on how to use Windows authentication in
conjunction with IIS authentication

m Forms Authentication Provider

= Information on how to create an application-specific login
form and perform authentication using your own code

= Passport Authentication Provider

= Information about the centralized authentication service
provided by Microsoft

Windows Authentication Provider

The Windows Authentication treats the user identity supplied
by Microsoft Internet Information Services (IIS) as the
authenticated user in an ASP.NET application

It is the default authentication mechanism for ASP.NET
applications

<system.web>
<authentication mode="Windows"/>
</system.web>

By default, the identity of the ASP.NET worker process is
used by the operating system to check all permissions (e.g.
file or database access using integrated security)

= It can be changed by enabling impersonation and setting the
User property

Types of Windows Authentication

Basic — the simplest and least secure

= The browser presents a standard Windows-supplied dialog box for the
user to enter his credentials (a username and password)

m The username and password are sent to the server encoded as a
Base64 string (in clear text)

Digest
= Similar to basic authentication, but the credentials are encrypted and a
hash is sent over the network to the server
= Works only with IE 5.x or higher and Windows 2000 or higher
Integrated Windows authentication

m Uses the current users' credentials presented at the time they logged
into Windows

m A dialog box is never presented to the user to gather credentials
unless the Windows logon credentials are inadequate for a requested
resource

Forms Authentication Provider

The Forms Authentication allows to authenticate users using
your own code and then maintain an authentication token in
a cookie or in the page URL

The authentication configuration element is used to
configure forms authentication

ASP.NET membership provides a way to store and manage
user information and includes methods to authenticate users

ASP.NET login controls work with ASP.NET membership and
allow to prompt users for credentials, validate users, recover
or replace passwords, and so on

ASP.NET 127

How to Use Forms Authentication

In the Web. config file:

1. Set the authentication mode

2. Set the login form and the name of the cookie that contains
the authentication ticket

3. Deny access for dNONYMOUS USErS

<system.web>
<authentication mode="Forms'">
<forms loginUrl="logon.aspx" name=".ASPXFORMSAUTH">
</forms>
</authentication>
<authorization>
<deny users="?" />
</authorization>
</system.web>

Krzysztof Mossakowski http://www.mini.pw.edu.pl/~mossakow

ASP.NET 128

How to Use Forms Authentication cont.

Create the logon page:

1. Add controls to allow the user specify his data (in most cases a
login and password)

2. Write code to verify the data

void Logon Click (object sender, EventArgs e) {

if ((UserEmail.Text == "jchen@contoso.com") &&
(UserPass.Text == "37Y3*99Ps"))

{
FormsAuthentication.RedirectFromLoginPage (

UserEmail.Text, Persist.Checked) ;

} else {

Msg.Text = "Invalid credentials. Please try again.";

}

Krzysztof Mossakowski http://www.mini.pw.edu.pl/~mossakow

ASP.NET 129

How to Use Forms Authentication cont.

Access to all pages of the application will be granted only for
users successfully authenticated on the logon page

= Thelogin is available in the User property

void Page Load(object sender, EventArgs e) ({
Welcome.Text = "Hello, " + Context.User.Identity.Name;

}

void Signout Click(object sender, EventArgs e) ({
FormsAuthentication.SignOut() ;
Response.Redirect ("Logon.aspx") ;

Krzysztof Mossakowski http://www.mini.pw.edu.pl/~mossakow

ASP.NET 130

Forms Authentication Control Flow

GET /default.aspx

302 Found
Location: http://abc.com/logon.aspx?RETURNURL=/default.aspx

GET /logon.aspx?RETURNURL=/default.aspx
200 OK
POST /logon.aspx?RETURNURL=/default.aspx

302 Found
Location: /default.aspx

GET /default.aspx

200 OK
Set-Cookie: ASPXTICKET=ABCDEFGl12345;Path=/

Future requests by the same browser session will be
authenticated when the module inspects the cookie

It is possible to create a persistent cookie that can be used
for future sessions, but only until the cookie's expiration date

Krzysztof Mossakowski http://www.mini.pw.edu.pl/~mossakow

Forms Authentication Credentials

Forms authentication credentials that are used to validate
users at logon can be stored in an external data source or in
the application configuration file

= The Authenticate () method can be used to compare the

credentials collected from the user to the list of user/password
pairs in the credentials section of the Web.config file

= Passwords can be stored using:
= Clear text (Clear)
= The MD5 hash digest (MD5) — better performance than SHA1
= The SHA1 has digest (SHA1) — improved security

<credentials passwordFormat="SHAl" >
<user name="Kim"
password="07B7F3EE06F278DB966BE960E7CBBD103DF30CA6" />
<user name="John"
password="BA56E5E0366D003E98EAIC7F04ABF8FCB3753889" />
</credentials>

FormsAuthentication Class

Initialize () — reads configuration settings and gets encryption values
for the application

Authenticate () — attempts to validate the credentials

Encrypt() , Decrypt() —a FormsAuthenticationTicket tO
string and vice versa containing an encrypted authentication ticket
suitable for an HTTP cookie

GetRedirectUrl () — returns the redirection URL for the request

RedirectFromLoginPage () — redirects an authenticated user to the
originally requested URL

HasPasswordForStoringInConfigFile () — produces a hash for a
password

RenewTicketIf01ld () — updates the sliding expiration

SetAuthCookie () — creates an authentication ticket and attaches it to
the cookie collection of the response

SignOut () — removes the authentication ticket by setting the
authentication cookie or URL text to an empty value

FormsAuthentication Class cont.

FormsCookieName, FormsCookiePath — gets the cookie name, path
for the application

CookiesSupported — whether the application is configured to support
cookieless forms authentication

CookieMode — wWhether the application is configured for cookieless forms
authentication

CookieDomain — the domain of the forms authentication cookie
DefaultUrl, LoginUrl — URLs of the default and login addresses
RequireSSL — Whether cookies must be transmitted using SSL
SlidingExpiration — whether sliding expiration is enabled

EnableCrossAppRedirects — whether authenticated users can be

redirected to URLs in other Web applications when the forms
authentication ticket is not stored in a cookie

FormsAuthentication OnAuthenticate -inthe Global.asax file

ASP.NET 134

ASP.NET Authorization

The authorization determines whether an identity should be
granted access to a specific resource
There are two ways to authorize access:

m The file authorization — it determines whether a user should
have access to the file

= The URL authorization — can be used to selectively allow or
deny access to arbitrary parts of an application

Krzysztof Mossakowski http://www.mini.pw.edu.pl/~mossakow

Using URL Authorization

The authorization section of the Web.config file is used
to configure the URL authorization
® allow, deny
m ysers— names of users, "?" for anonymous users, "*" for all
authenticated users
= roles — identifies a role (a RolePrincipal object)

m Vverbs— defines the HTTP verbs to which the action applies
(GET, HEAD, POST, *)

<authorization>
<authorization> <allow users="John"/>
<allow verbs="GET" users="*"/> <deny users="*"/>

<allow verbs="POST" users="Kim"/> |/authorization>
<deny verbs="POST" users="*"/>
</authorization>

<allow users="Kim"/>
<allow roles="Admins"/>

<deny users="John"/>
<deny users="?"/>
</authorization>

ASP.NET Impersonation

When using the impersonation, ASP.NET applications can be
executed with the Windows identity (user account) of the
user making the request

<configuration>
<system.web>
<identity impersonate="true"/>
</system.web>
</configuration>

<identity impersonate='"true"
userName="contoso\Jane"
password="EQlbp4!T2" />

String username =
System.Security.Principal.WindowsIdentity.GetCurrent () .Name;

ASP.NET Membership

Features of the ASP.NET membership:
= Creating new users and passwords

= Storing membership information (user names, passwords, and
supporting data) in Microsoft SQL Server, Active Directory, or
other

= Authenticating users who visit the site

= ASP.NET login controls can be used to create a complete
authentication system that requires little or no code

= Managing passwords (creating, changing, and resetting)
= Exposing a unique identification for authenticated users
= Can be used in the application

= Integrates with the ASP.NET personalisation and role-
management (authorization) systems

= A custom membership provider can be created

Login Controls

Login - displays a user interface for the user authentication
LoginView - allows to display different information to
anonymous and logged-in users (using two templates)

LoginStatus - displays a login link for users who are not
authenticated and a logout link for authenticated users

LoginName - displays a user's login name (works also for
Windows authentication)

PasswordRecovery - allows a user's password to be
retrieved based on the e-mail address

CreateUserWizard - allows users to change their password

ASP.NET 139

Login Controls cont.

[H :
H =ign Up for Your New Account
Forgot ¥our Password? User Natme: .
Enter wour User Mame to recetve your password. sEfLiae
TTeer Na_tng:l * Password: g
Submit | Confirm Password: *
E-mail: *
F Loz In security Question: *
Tzer MName: * security Answer: *
Password: * The Password and Confirmation Password must match,
™ Remember me next time.
Create User
Log In
iz
Change ¥ our Password
Password: *
MNew Password: *
Confirm MNew Password: *
The Confirm Mew Password must match the INew Password entry.
Change Passward | Cancel |

Krzysztof Mossakowski http://www.mini.pw.edu.pl/~mossakow
S EBSSUUUEB).

Role Management

The role management allows to treat groups of users as a set
of units by assigning users to roles such as manager, sales,
member, and so on

Ways of roles management:
m The ASP.NET Web Site Administration Tool

<roleManager enabled='"true" cacheRolesInCookie="true" >
</roleManager>

= Programmatically

Roles.CreateRole ("members") ;

Roles.AddUsersToRole ("JoeWorden", "manager") ;
string[] userGroup = new string[2];
userGroup[0] = "JillShrader";

userGroup[l] = "ShaiBassli";
Roles.AddUsersToRole (userGroup, "members") ;

Working with Roles

Information about the logged-in user is available to the
application from the User property

When roles are enabled, ASP.NET looks up the roles for the
current user and adds them to the User object

if (User.IsInRole("members")) {
buttonMembersArea.Visible = True;

}

string[] userRoles = ((RolePrincipal)User) .GetRoles() ;

Based on user's roles, the Loginview control can
dynamically create an interface for the user

Role Management Providers

Role management services use the provider model to
separate the functionality of role management from the data
store that contains role information

The .NET Framework includes the following providers that
maintain role information in different data stores:

= SQL Server (the default provider)

= Windows — useful only if the application runs on a network
where all users have domain accounts

= Authorization Manager (AzMan) — an XML file or a directory-
based policy store

It is possible to create custom role providers

ASP.NET 143

SQL Server Role Management Provider

It is the default provider, it can be used with SQL Server or
SQL Server Express

The aspnet regsql.exe tool creates the required
database and all its tables

m The database server g rr————

Fle Edt View ‘Webste Buld Debug Data QuaryDesigner Tooks Window Communty Help

instance is T T I T e S 5T

| = % ChangeType~ ! »3 [z ; xc
. \SQLEXPRESS m aspoet_Userseress.aspnetdb) | Createlser aspe | web.conflg ¥ X SoutionBph.. v B X
E] 4 % Appicatonld Userld Usarbiame Lowere... Moblerbas Isseorymeus s 3 F(da|) e |
= |4 Data Connections Al D Bci-e53ebesab28T Octbdbad-d... fberty fbety ALK Faise 2771 B Sohion FormsBaseds|
= The authentication ey | e e O
S () Tables 700d3%5-881d-.., 647049355... sberty siberty ML Fakse A7 JWGO(WIG
*

type is Windows 3
% D) aspowet_Personal

= The name of the : 3o <A,
database is ; S e -
aspnetdb s 3 mweanorad | woecm

: j:::?,.,,, Op9n T4 Defvits Distiret Vakot No
S Tures I3 Sow TableDxa

2 hattiea e
¢ a8 ¢
188 Detabase Exporer |55 Took 0 =~ ° 3 Mox Q2 v
. 2 _')(Delete
5 Erroe Ust | Q) Bresbpoies | (] |
== 7] fefresh

o

Resdy

Krzysztof Mossakowski http://www.mini.pw.edu.pl/~mossakow
.

ASP.NET 144

State Management

Krzysztof Mossakowski http://www.mini.pw.edu.pl/~mossakow

ASP.NET 145

ASP.NET State Management

The HTTP protocol is stateless
To keep information between requests, one of the following
ways can be used:
= Client-based options:
= View state
= Control state
= Hidden fields
= Cookies
= Query strings
= Server-based options:
= Application state
= Session state
= Profile properties

Krzysztof Mossakowski http://www.mini.pw.edu.pl/~mossakow

View State

A Web application is stateless

= A new instance of the Web page class is created each time the
page is requested from the server

View state is a way to store information directly on the page
that should persist between postbacks

= When the page is posted back to the server, the contents of
view state are sent as a part of the page postback information

View state data is stored in one or more hidden fields

= View state information can be accessed using the page's
ViewState property

= Since view state is sent as a hidden field, changes to view state
can be made until the PreRenderComplete event

ASP.NET 147

Considerations for Using View State

View state information is serialized into XML and then
encoded using base64 encoding

= If view state contains a large amount of information, it can
affect performance of the page

= If the amount of data in a hidden field becomes large, some

proxies and firewalls will prevent access to the page that
contains them

Some mobile devices do not allow hidden fields at all

Krzysztof Mossakowski http://www.mini.pw.edu.pl/~mossakow

Example of Saving Values in View State

Arraylist PageArraylist;

ArrayList CreateArray () {
ArraylList result = new ArrayList(4);
result.Add("item 1")
result.Add("item 2")
result.Add("item 3")
result.Add("item 4")
return result;

}

void Page Load(object sender, EventArgs e) ({

if (ViewState["arraylListInViewState"] != null) {
PageArrayList = (Arraylist)ViewState["myArrayList"];
} else {

PageArrayList = CreateArray () ;

}
void Page_ PreRender (object sender, EventArgs e) ({

ViewState.Add ("arrayListInViewState", PageArraylist);

Pros and Cons of View State

Advantages
= NO server resources are required

= Simple implementation (it does not require any custom
programming to use)

= Enhanced security features (the values in view state are
hashed, compressed, encoded for Unicode implementations,
and optionally encrypted)

Disadvantages

= Performance considerations (storing large values can cause the
page to slow down)

= Device limitations (mobile devices might not have the memory
capacity to store a large amount of view-state data)

Control State

In addition to view state, ASP.NET supports a page-state
feature called control state

The page uses control state to persist control information that
must be retained between postbacks

= It works even if the view state is disabled for the page or for a
control

Like view state, control state is stored in one or more hidden
fields
An example of using the control state:

= A custom control which needs to store some data between
requests

Pros and Cons of Control State

Advantages
= No server resources are required (by default, control state is
stored in hidden fields on the page)
= Reliability (control state works even when the view state is
turned off)

= Versatility (custom adapters can be written to control how and
where control-state data is stored)

Disadvantages

= Some programming is required (it is a custom state-persistent
mechanism, the developer has to write code to save and load
control state)

Pros and Cons of Hidden Fields

Advantages

= NoO server resources are required
= Widespread support

= Simple implementation

Disadvantages

= Potential security risks (the content can be manually encrypted
and decrypted, but it requires extra coding and overhead)

= Simple storage architecture (just simple string values)

= Performance considerations (storing large values can cause the
page to slow down)

= Storage limitations (if the amount of data in a hidden field
becomes very large, some proxies and firewalls will prevent
access to the page that contains them)

Cookies

A cookie is a small bit of text that accompanies requests and
pages as they go between the Web server and browser

= The cookie contains information the Web application can read
whenever the user visits the site

Cookie limitations:
= Most browsers support cookies of up to 4096 bytes
= Most browsers allow only 20 cookies per site

= Some browsers also put an absolute limit of the number of
cookies they will accept from all sites combined

m The user can set his browser to refuse cookies

ASP.NET

Writing Cookies

154

Response.Cookies["userName"] .Value = "patrick";
Response.Cookies|["userName'"] .Expires = DateTime.Now.AddDays (1) ;

HttpCookie aCookie = new HttpCookie("lastVisit") ;
aCookie.Value = DateTime.Now.ToString() ;
aCookie.Expires = DateTime.Now.AddDays (1) ;
Response.Cookies.Add (aCookie) ;

Response.Cookies["userInfo"] ["userName"] = "patrick";
Response.Cookies["userInfo"] ["lastVisit"] = DateTime.Now.ToString() ;
Response.Cookies["userInfo"] .Expires = DateTime.Now.AddDays (1) ;

HttpCookie aCookie = new HttpCookie ("userInfo") ;
aCookie.Values["userName"] = '"patrick";
aCookie.Values["lastVisit"] = DateTime.Now.ToString() ;
aCookie.Expires = DateTime.Now.AddDays (1) ;
Response.Cookies.Add (aCookie) ;

Krzysztof Mossakowski http://www.mini.pw.edu.pl/~mossakow

ASP.NET 155

Controlling Cookies

Limiting a cookie to a folder or application:

HttpCookie appCookie = new HttpCookie ("AppCookie") ;

appCookie.Value = "written " + DateTime.Now.ToString() ;
appCookie.Expires = DateTime.Now.AddDays (1) ;
appCookie.Path = "/Applicationl";

Response.Cookies.Add (appCookie) ;

Limiting a cookie domain space:

Response.Cookies["domain"] .Value = DateTime.Now.ToString() ;
Response.Cookies["domain"] .Expires = DateTime.Now.AddDays (1) ;
Response.Cookies|["domain"] .Domain = "support.contoso.com";

Krzysztof Mossakowski http://www.mini.pw.edu.pl/~mossakow

Reading Cookies

if (Request.Cookies["userName"] !'= null) ({
Labell.Text = Server.HtmlEncode (
Request.Cookies["userName"] .Value) ;
}
if (Request.Cookies["userName"] !'= null) ({
HttpCookie aCookie = Request.Cookies["userName"];
Labell.Text = Server.HtmlEncode (aCookie.Value) ;

if (Request.Cookies['"userInfo"] != null) {
Labell.Text = Server.HtmlEncode (

Request.Cookies|["userInfo"] ["userName"]) ;
Label2.Text = Server.HtmlEncode (

Request.Cookies["userInfo"]["lastVisit"]) ;

Using the HtmlEncode () method makes certain that a
malicious user has not added executable script into the cookie

ASP.NET 157

Reading Cookie Collections

for (int i = 0; i1 < Request.Cookies.Count; i++) {
aCookie = Request.Cookies[i];
output.Append("Name = " + aCookie.Name + "
");
if (aCookie.HasKeys) ({
for (int j = 0; j < aCookie.Values.Count; j++) {
subkeyName = Server.HtmlEncode (aCookie.Values.AllKeys[]j])
subkeyValue = Server.HtmlEncode (aCookie.Values[j])

output.Append ("Subkey name = " + subkeyName + "
");
output.Append ("Subkey value = " + subkeyValue + "
");
}
} else {
output.Append ("Value = " + Server.HtmlEncode (aCookie.Value) +

"

");
}

}
Labell.Text = output.ToString() ;

Krzysztof Mossakowski http://www.mini.pw.edu.pl/~mossakow

ASP.NET 158

Modifying and Deleting Cookies

Modifying a value of a cookie:

int counter;

if (Request.Cookies["counter"] == null) {
counter = 0;
} else {

counter = int.Parse (Request.Cookies|["counter"] .Value);

}

counter++;
Response.Cookies|["counter"] .Value = counter.ToString() ;
Response.Cookies|["counter"] .Expires = DateTime.Now.AddDays (1) ;

Deleting a cookie:

if (Request.Cookies['"counter"] != null) ({
HttpCookie aCookie = new HttpCookie ("counter") ;
aCookie.Expires = DateTime.Now.AddDays (-1) ;
Response.Cookies.Add (aCookie) ;

Krzysztof Mossakowski http://www.mini.pw.edu.pl/~mossakow

Kr

ASP.NET

Testing whether Cookies are Accepted

159

protected void Page Load(object sender, EventArgs e) {
if (!'Page.IsPostBack) {

if (Request.QueryString["AcceptsCookies"] == null) {
Response.Cookies|['"TestCookie"] .Value = "ok";
Response.Cookies|["TestCookie"] .Expires

DateTime .Now.AddMinutes (15) ;
Response.Redirect ("TestForCookies.aspx?redirect=" +

Server .UrlEncode (Request.Url.ToString())) ;
} else {

Labell.Text = "Accept cookies = " +

Server .UrlEncode (Request.QueryString["AcceptsCookies"]) ;
}

protected void Page Load(object sender, EventArgs e) {
string redirect =

Request.QueryString['"redirect"];
string accepts = "no";

if (Request.Cookies["TestCookie"] !'= null) {
accepts = "yes'";

Response.Cookies|["TestCookie"] .Expires
DateTime .Now.AddDays (-1) ;
}

// delete the cookie
Response.Redirect (Request.QueryString["redirect"] +

"?AcceptsCookies=" + accepts,
}

true) ;

.‘

ASP.NET 160

Pros and Cons of Cookies

Advantages

= Configurable expiration rules

= NoO server resources are required
= Simplicity

= Data persistence
Disadvantages

= Size limitations

= User-configured refusal

= Potential security risks (users can manipulate cookies on their
computer; hackers have historically found ways to access
cookies from other domains on a user's computer)

Krzysztof Mossakowski http://www.mini.pw.edu.pl/~mossakow

ASP.NET 161

Pros and Cons of Query Strings

Advantages

= NO server resources are required
= Widespread support

= Simple implementation

Disadvantages

= Potential security risks (information in the query string is directly
visible to the user via the browser's user interface)

= Limited capacity (a 2083-character limit on the length of URLS)

Krzysztof Mossakowski http://www.mini.pw.edu.pl/~mossakow

Application State

Application state is a data repository available to all classes in
an ASP.NET application

It is stored in memory on the server and is faster than storing
and retrieving information from a database

It applies to all users and sessions

Application state is stored in an instance of the
HttpApplicationState class
= This class exposes a key-value dictionary of objects

= [t is most often accessed through the Application property
of the HttpContext class

Application State Considerations

Resources — storing large blocks of data in application state
can fill up server memory, causing the server to page
memory to disk

Volatility — the data is lost when the application is stopped or
restarted

Scalability — application state is not shared among multiple
servers serving the same application, as in a Web farm

Concurrency — application state can be accessed
simultaneously by many threads
m The Lock () and UnLock () methods can be used to ensure
data integrity

ASP.NET

Using Application State

164

Application["Message'"] = "Welcome to the Contoso site.";
Application["PageRequestCount”"] = 0;

Application.Lock() ;
Application['"PageRequestCount"] =

((int)Application['"PageRequestCount"])+1;
Application.UnLock () ;

if (Application["AppStartTime"] !'= null) {
DateTime myAppStartTime = (DateTime)Application["AppStartTime"];
}

Krzysztof Mossakowski http://www.mini.pw.edu.pl/~mossakow

ASP.NET 165

Pros and Cons of Application State

Advantages
= Simple implementation
= Application scope
Disadvantages
= Application scope
= Limited durability of data
= Resource requirements

Careful design and implementation of application state can
increase Web application performance

= For example, placing a commonly used, relatively static dataset
in application state can increase site performance

Krzysztof Mossakowski http://www.mini.pw.edu.pl/~mossakow

Session State

ASP.NET session state allows to store and retrieve values for
a user

It identifies requests from the same browser during a limited
time window as a session

Session variables are stored in a
SessionStateIltemCollection that is exposed through
the HttpContext.Session property

Sessions are identified by a unique session identifier stored in
the SessionID property
®= SessionID values are stored in a cookie by default

= The application can be configured to store SessionID values
in the URL for a "cookieless" session

Session State Modes

The available session state modes:

= InProc — session state is stored in memory on the Web server
(the default)

m StateServer — using a separate process
= Session state is preserved if the application is restarted
= Session state is available to multiple Web servers
= SQLServer — using a SQL Server database
= Custom — possibility to specify a custom storage provider
= Off — disables session state

<configuration>
<system.web>
<sessionState mode="StateServer"
stateConnectionString="tcpip=SampleStateServer:42424"
cookieless="false"
timeout="20"/>
</system.web>
</configuration>

ASP.NET

Using Session State

168

string firstName = "Jeff";
string lastName = "Smith";
string city = "Seattle";

Session["FirstName"] = firstName;
Session["LastName"] = lastName;
Session["City"] = city;

string firstName =
string lastName =
string city = (string) (Session["City"]);

(string) (Session["First"]) ;
(string) (Session["Last"]) ;

if (Session["City"] == null) {
// No such value in the session state;

}

take an appropriate action

Krzysztof Mossakowski

http://www.mini.pw.edu.pl/~mossakow

ASP.NET 169

Pros and Cons of Session State

Advantages

= Simple implementation

= Session-specific events

= Data persistence

= Platform scalability
Cookieless support

Extensibility (custom providers can be created)

Disadvantages
m Performance considerations

Krzysztof Mossakowski http://www.mini.pw.edu.pl/~mossakow

Profile Properties

Profile properties allow to store user-specific data

Unlike session state, the profile data is not lost when a user's
session expires

The ASP.NET profile allows to easily manage user information
without requiring to create and maintain custom database
= It makes the user information available using a strongly typed
API
= Objects of any type can be stored in the profile

ASP.NET 171

Pros and Cons of Profile Properties

Advantages

= Data persistence

= Platform scalability
= Extensibility

Disadvantages
m Performance considerations

= Additional configuration requirements (the profile providers
must be configured and all of the profile properties must be pre-
configured)

= Data maintenance (the application must call the appropriate
cleanup mechanisms)

Krzysztof Mossakowski http://www.mini.pw.edu.pl/~mossakow

HttpContext.Current.Items

The Items collection of HttpContext iS an IDictionary
key/value collection of objects shared across the life of a
single HttpRequest
It allows to:

= Share content between IHttpModules and IHttpHandlers

m Communicate between two instances of the same
UserControl on the same page

= Store the results of expensive calls that might otherwise happen
twice or more on a page

User Controls
Custom Controls
HTTP Modules
HTTP Handlers

User Controls

User controls are containers into which markup and Web
server controls can be put

= The user control can be treated as a unit, properties and
methods can be defined for it

A user control is created in the same way as an ASP.NET
Page
= The file extension is .ascx
= Instead of an @Page directive, it contains an @Control
directive
= A user control does not have the html, body, or form
elements

A user control is added to a page by registering it on the host
page, using the @Register directive

<%@ Register src="Spinner.ascx" tagname="Spinner" tagprefix="ucl" %>

ASP.NET 175

Creating Instances Programmatically

In the user control:

<%@ Control Language="C#" AutoEventWireup="true"
CodeBehind="Spinner.ascx.cs" Inherits="WebApplication2.Spinner" %>

In the target page:

<%@ Reference Control="Spinner.ascx" %>

In code of the target page:

private Spinner Spinnerl;

protected void Page Load(object sender, EventArgs e) {
Spinnerl = (Spinner)LoadControl ("Spinner.ascx");
Spinnerl.MaxValue = 20;
Spinnerl.MinValue = 10;
PlaceHolderl.Controls.Add (Spinnerl) ;

}

protected void Buttonl Click (object sender, EventArgs e) {
Labell.Text = Spinnerl.CurrentNumber.ToString() ;

}

—

Custom Controls

Custom controls can be derived from:
B System.Web.UI.Control
= The basic functionality required to participate in the Page
framework
= It implements IComponent (so it works with the Visual
Studio Toolbox, Property Browser etc.)
B System.Web.UI.WebControls.WebControl
= The common functionality to create controls that render a
visual HTML representation
= Support for many basic styling elements such as Font,
Width, and Height

= Any existing control

namespace Samples.AspNet.CS.Controls {
[AspNetHostingPermission (SecurityAction.Demand,
Level = AspNetHostingPermissionLevel .Minimal),
AspNetHostingPermission (SecurityAction. InheritanceDemand,
Level=AspNetHostingPermissionLevel .Minimal),
DefaultProperty ("Email") ,
ParseChildren (true, "Text"),
ToolboxData ("<{0}:MailLink runat=\"server\"> </{0}:MailLink>")]
public class MailLink : WebControl {

[Bindable (true) , Category ("Appearance"),
DefaultValue(""), Description("The e-mail address.")]
public virtual string Email ({

get {
string s = (string)ViewState["Email"];
return (s == null) ? String.Empty : s;
} set {
ViewState["Email"] = wvalue;

}

protected override HtmlTextWriterTag TagKey {
get { return HtmlTextWriterTag.A; }

}

[Bindable (true) , Category ('"Appearance'"), DefaultValue(""),
Description('"The text to display on the link."), Localizable(true),
PersistenceMode (PersistenceMode.InnerDefaultProperty)]

public virtual string Text ({

get {
string s = (string)ViewState|['"Text"];
return (s == null) ? String.Empty : s;

}

set { ViewState['"Text"] = wvalue; }

protected override void AddAttributesToRender (
HtmlTextWriter writer) {
base.AddAttributesToRender (writer) ;
writer . AddAttribute (HtmlTextWriterAttribute.Href,
"mailto:" + Email) ;

protected override void RenderContents (HtmlTextWriter writer) ({
if (Text == String.Empty) ({
Text = Email;

}

writer.WriteEncodedText (Text) ;

Common Attributes for Custom Controls

Bindable — true to display the control in the data bindings
dialog box

Browsable — true to be displayed in the designer
Category — in which category the control will be displayed
when the Properties dialog is sorted by category
DefaultProperty

DefaultValue

Description — visible in the description box in the
Properties panel

ToolboxData — used by Visual Studio to provide the tag
when the object is dragged from the toolbox

ASP.NET 180
Example of Derived Control
[DefaultProperty ("Text")]
[ToolboxData ("<{0} :CountedButton runat=server>" +
"</{0} :CountedButton>")]
public class CountedButton System.Web.UI.WebControls.Button
{
// constructor initializes view state value public
CountedButton () {
this.Text = "Click me";
ViewState["Count"] = 0;
}
// count as property maintained in view state
public int Count ({
get { return (int)ViewState['"Count"]; }
set { ViewState["Count"] = wvalue; }
}
// override the OnClick to increment the count,
// update the button text and then invoke the base method
protected override void OnClick (EventArgs e) {
ViewState["Count"] = ((int)ViewState["Count"]) + 1;
this.Text = ViewState["Count"] + " clicks";
base.OnClick (e) ;
}
}
K
- B

HTTP Modules

An HTTP module is an assembly that is called on every
request made to the application

HTTP modules are called as part of the ASP.NET request
pipeline and have access to life cycle events throughout the
request

The HTTP module must implement the THttpModule

= In the Init () method interesting application events can be
subscribed
= The Dispose () method is used to free resources

Custom HTTP module is registered in the application's
Web.config file

= An instance of the module is created and the Init () method is
called when the application object is created

= When subscribed event is raised, the appropriate method in the
module is called

Events Available for HTTP Modules

BeginRequest — a new HTTP request
AuthenticateRequest — authenticating the user
AuthorizeRequest — authorizing the user
AcquireRequestState — acquiring of the Session State

PreRequestHandlerExecute — just before executing of the
handler

PostRequestHandlerExecute — just after executing the handler
PreSendRequestHeaders — just before sending headers to the
client

PreSendRequestContent — just before sending contents to the
client

EndRequest — just before sending the response to the client
Error — an unhandled exception

ASP.NET 183

Applications of HTTP Modules

Sample applications of HTTP modules:

= Custom authentication or other security checks before the
requested page, XML Web service, or handler is called

= Statistics and logging

= Custom headers of footers
The HTTP module can be added to the GAC and registered in
the Machine.config file, so it can be reused across
applications

Krzysztof Mossakowski http://www.mini.pw.edu.pl/~mossakow

Creating HTTP Module

Create a class that implements the IHttpModule
Write a handler for the Init () method

= Initialize the module

= Subscribe to application events

Write code for the events

Optionally implement the Dispose () method

Register the module in the Web.config file

<configuration>
<system.web>
<httpModules>
<add name="HelloWorldModule" type="HelloWorldModule"/>
</httpModules>
</system.web>
</configuration>

ASP.NET 185

Sample HTTP Module

using System.Web;

public class AppendMessage : IHttpModule
{

private HttpContext current = null;

public void Init(System.Web.HttpApplication context)
{
current = context.Context;
context.PreSendRequestContent +=
new EventHandler (context PreSendRequestContent) ;

void context PreSendRequestContent (object sender, EventArgs e)
{
// alter the outgoing content by adding a HTML comment
string message = "<!-- Processed at " +
System.DateTime.Now.ToString() +
" by a custom HTTP module -->";
HttpApplication application = (HttpApplication)sender;
application.Context.Response.Write (message) ;

HTTP Handlers

An ASP.NET HTTP handler is the process that runs in response to a
request made to an ASP.NET Web application

ASP.NET maps HTTP requests to HTTP handlers based on a file
name extension

= Each HTTP handler enables processing of individual HTTP URLs or
groups of URL extensions within an application

Sample built-in HTTP handlers in ASP.NET:

= ASP.NET Page Handler (*.aspx)

= Web service handler (*.asmx)

m ASP.NET user control handler (*.ascx)

= Trace handler (trace.axd)
An HTTP handler can also be requested directly for serving some
special content, e.g. images or files

= .ashx extension is usually used for such handlers

Creating HTTP Handlers

To create a custom HTTP handler, create a class that
implements the THttpHandler interface (or the

IHttpAsyncHandler for an asynchronous handler)

= Implement the IsReusable property and the
ProcessRequest () method

Asynchronous HTTP handlers allow to start an external
process and continue the processing of the handler without
waiting for the external process to finish
= The BeginProcessRequest () and EndProcessRequest ()
method must be implemented

ASP.NET 188

Sample HTTP Handler

using System.Web;
public class HelloWorldHandler : IHttpHandler

{

public void ProcessRequest (HttpContext context)

{
HttpRequest Request = context.Request;
HttpResponse Response = context.Response;
Response.Write ("<html>") ;
Response.Write ("<body>") ;
Response.Write ("<hl>A custom HTTP handler.</hl1l>");
Response.Write ("</body>") ;
Response.Write ("</html>") ;

public bool IsReusable <configuration>
(<system.web>
// return true to <httpHandlers>
// enable pooling <add verb="*" path="*.sample"
get { return false; } type="HelloWorldHandler" />
} </httpHandlers>
} </system.web>
</configuration>
Krzysztof Mossakowski el e, oo

Debugging, Error Handling,
and Health Monitoring

ASP.NET Debugging

To enable debugging:

= For all pages of the application: use the compilation section
of the Web . config file

= For single pages: add debug=true to the @Page directive

The debug mode should be turned off before deploying

= The application compiled into a debug build performs
considerably more slowly

= In the debug mode, more information is exposed in the stack
when an error occurs

It is possible to debug the Web application remotely
It is possible to debug client scripts written in JavaScript

ASP.NET Tracing

Tracing allows to view diagnostic information about a single
request and to write debug statements directly in code

There are two tracing options (it is possible to route
messages between tracing mechanisms):
= ASP.NET tracing (using the trace.axd address)

= Standard .NET Framework trace output (the
System.Diagnostics.Trace class)

Enabling Tracing for Pages

When tracing is enabled for a page, trace information is
displayed if any browser requests the page

To enable tracing for a page set trace=true for the @Page
directive
Optionally, the TraceMode attribute can be used to specify
the order in which trace messages appear

m SortByTime, SortByCategory

<%Q@ Page Language="C#"
Trace="True"
TraceMode="SortByCategory" %>

The Trace attribute in the @Page directive takes precedence
over attributes set in the trace element in the Web.config

file

Writing Trace Information

Both the

Trace.Write ()
and Trace.Warn ()
methods write trace
information, the
Warn () method
uses red colour for
text

/Z untitled Page - Microsoft Internet Explorer

File Edit ‘Wiew

Favorites

Tools Help

=101 %]

%
| o

§ . - o 5
_) Back - J - \ﬂ \ELI '\] ‘ /.\'Search “E\'/ Favorites {‘/{

Address I@j httpefflocalhost: 2337 DebugORama) TraceMe aspe

Type something in here: |

And Then Press Me

Request Details

Session Id:
Time of Request:
Request Encoding:

2klgk2esiufk03zof4nde]vi
7/14/2005 4:25: 55 Al
Unicode (UTF-8

Trace Information

Request Type:
Status Code:

Response Encoding:

GET

20

0

Unicode (UTF-8

Category Message From First{s) From Last{s)}

aspx.page Begin Prelnit

aspx.page End Prelnit 7.76635019255241E-05 0.000078

aspx.page Beqgin Init 0.000109231759902446 0.000032

aspx.page End Init 0.000132244462075487 0.0000320

aspx.page Begin InitCamplete 0.000158679385229128 0.000020

aspx.page End InitCamplete 0.000179352403727289 0.000021

aspx.page Begin PreLoad 0.00019974605711061 0.000020

aspx.page End PreLoad 0.000228241292824292 0.0000282

aspx.page Beqgin Load 0.00024207622197793232 0.000020

Page_Load alTableEntries is null 0.00027657 1463691614 0.000028

aspx.page End Load 0.0002003217492453016 0.000024

aspx.page Begin LoadComplete 0.000320431786721497 0.000020

aspx.page End LoadComplete 0.000340266709875138 0.000020

aspx.page Begin PreRender 0.0003259822267913930 0.000020 _l;l

1 3
[&] Done |_|_|_|_|_|\J Local intranet v

Trace.Warn ("Page Load",

"alTableEntries is null");

Trace.Write ("Buttonl Click", "Adding: " + TextBoxl.Text);

Application-Level Tracing

<configuration>
<system.web>
<trace enabled="true" requestLimit="40" localOnly="false" />
</system.web>
</configuration>

The trace configuration attributes:
®m enabled — the default is false
®m pageOutput — the default is false (trace.axd can be used)
® requestLimit — the number of trace requests to store on the server
(the default is 10)
m traceMode — SortByTime, SortByCategory
® localOnly — true to make trace.axd available only on the server

® mostRecent — true to display the most recent trace information as
tracing output (the default is false)

m writeToDiagnosticsTrace — true {0 use
System.Diagnostics

a http:/ /localhost:2337 /DebugDRama/ Trace.axd - Microsoft Internet Explorer - |EI|£|
File Edit View Favaorites Tools Help | -.i’
» — o —
- Y -) % Eavori 2 A . J% D ¥
OBack &) |ﬂ \gl ’yl ‘ - Search © ¢ Favorites {;t &= Q .“‘
Address I@l http: flocalhost: 2337/ DebugOR.amal Trace axd j a Go |Links 2
=4

Application Trace
DebugORama

[clear current trace]
Physical Directory: C:haspnetstepbystepcodetChapter1ieyDebugORama’,

Requests to this Application Remaining: 11
No. Time of Request File Status Code Yerb

1 71472005 43436 AM /TraceMe,aspx 200 GET Yigw Details

2 7/14/2005 4:36: 10 AM STraceMe.aspx 200 GET Yiew Details

3 7/14/2005 4:36:20 AM STraceMe.aspx 200 POST Yiew Details

4 714720058 4:36:28 AM /TraceMe.aspx 200 POST Yiew Details

Microsoft \MET Framework Yersion: 2,0.50215.44; ASP.MET Yersion:2.0,.50215. 44

a http:/ /localhost:2337 /DebugORama/ Trace.axd?id=0 - Microsoft Internet Explorer | — |E||1|
File Edit “iew Favaorites Tools Help | -.ﬂ'

" = — n —
eBack > B \ﬂ @ l\l | pe | Search 5. Favarites e}: L = - é% @ ‘i’i

Address I@:l http:{flocalhost: 2337 DebugORamay Trace, axdrid=0 j a efa] | Links **

[@oee Request Details
B

Session Id: I3g2ojnlrzyiblytpcbhdhzg Request Type: GET

Time of Request: T/14/2008 434 36 AM Status Code: 200

Request Encoding: Unicode (UTF-8) Response Encoding: Unicode {UTF-8)
Category Message From First{s) From Last{s)
aspx.page Begin Prelnit

aspx.page End Prelnit 0.00596243964603043 0.005962
3spx.page Begin Init 0.00662933417515355 0.000667
aspx.page End Init 0.010431772753241 0.003802
aspx.page Begin InitComplete 0.0104550172019069 0.000033
aspx.page End InitComplete 0.0107038743750952 0.000239

TracelListeners

TextWriterTracelistener myTextListener = new
TextWriterTracelistener (File.Create (@"C:\myListener.log")) ;
Trace.Listeners.Add (myTextListener) ;

Or

<configuration>
<system.diagnostics>
<trace autoflush="false" indentsize="4">
<listeners>
<add name="myListener"
type="System.Diagnostics.TextWriterTraceListener"
initializeData="c:\myListener.log" />
<remove name="Default" />
</listeners>
</trace>
</system.diagnostics>
</configuration>

WebPageTracelListener

New in ASP.NET 2.0

Automatically forwards tracing information from any
component calls to System.Diagnostics.Trace.Write

= It allows to write components using the most generic trace
provider and see its tracing output in the context of the
application

<configuration>
<system.diagnostics>
<trace autoflush="false" indentsize="4">
<listeners>
<add name="webListener"
type="System.Web.WebPageTracelListener, System.Web"/>
</listeners>
</trace>
</system.diagnostics>
<system.web>
<trace enabled="true" pageOutput="false" localOnly="true" />
</system.web>
</configuration>

Handling Page-Level Errors

The Error event handler of the page catches all unhandled
exceptions on the current page
m It is preferable to use try/catch blocks

= Error information cannot be displayed in a control (e.g. as a
Label control) because new instances of controls are not

created on the page when the Error handler is called

= After handling an error, it must be cleared by calling the
Server.ClearError () method

private void Page Error(object sender, EventArgs e) ({
Response.Write ("An application error has been logged.");
ApplicationSpecificErrorLogger (Server.GetLastError () .Message) ;
Server.ClearError () ;

}

Handling Application-Level Errors

void Application Error (Object sender, EventArgs e) {
Server.Transfer ("Errors.aspx") ;

}

protected void Page Load(object sender, EventArgs e) ({
System.Text.StringBuilder errMessage = new StringBuilder() ;
System.Exception appException = Server.GetLastError() ;
if (appException is HttpException) {
HttpException checkException = (HttpException)appException;
switch (checkException.GetHttpCode()) ({
case 403: { errMessage.Append("Forbidden."); break; }
case 404: { errMessage.Append("Not found"); break; }

default: { errMessage.Append(" An error."),; break; }
}

} else {
errMessage .AppendFormat ("Error:
{0}",
appException.ToString()) ;

}
Labell.Text = errMessage.ToString() ;

Server.ClearError () ;

Custom Errors in Web.config

<configuration>
<system.web>
<customErrors defaultRedirect="CustomErrorPage.htm"
mode="0On" >
<error statusCode="400"
redirect="CustomErrorPage400.htm" />
<error statusCode="404"
redirect="CustomErrorPaged404 .htm" />
<error statusCode="500"
redirect="CustomErrorPage500.htm" />
</customErrors>

defaultRedirect — default URL for errors

mode — On, Of £, RemoteOnly (custom errors are shown
only to remote clients; the default)

Guidelines for Error Handling

Catch what you expect:
= Use a try/catch blocks around error-prone code

= Consider using the page-level error handler to catch specific
exceptions that might happen anywhere on the page

But prepare for unhandled exceptions:

m Set the ErrorPage property if a specific page should show a
specific error at page for any unhandled exception

= Have default error pages for 400 and 500 errors in the
Web.config file
= Have the Application_ OnError handler that takes into

consideration both specific exceptions, as well as all unhandled
exceptions

ASP.NET Health Monitoring

ASP.NET health monitoring allows system administrators to
monitor the status of deployed Web applications

There are a number of built-in events, including application
lifetime events such as start and stop and a heartbeat event
General scenarios:

= Monitoring the performance of an application to ensure that it is
healthy

= Rapidly diagnosing failing applications or systems
= Appraising significant events during the lifecycle of a given
application

Web Events

Web events can contain information about the ASP.NET
worker process, application domain, request data, response
data, application errors, and configuration errors

By default, ASP.NET automatically records some Web event
data
Web events can be customized:

= The number of event notifications that occur in a given time
span can be limited

= An existing provider or custom provider can be subscribed to a
Web event

= Custom events can be created by inheriting from existing event
classes

ASP.NET 204

Caching

Krzysztof Mossakowski http://www.mini.pw.edu.pl/~mossakow

ASP.NET 205

ASP.NET Caching

ASP.NET provides caching using two basic caching
mechanisms:
= The page output caching, which saves the output of page
processing and reuses the output when a user requests the
page again

= The application caching, which allows to cache any generated
data (e.g. DataSets)

Krzysztof Mossakowski http://www.mini.pw.edu.pl/~mossakow

Caching ASP.NET Pages

Cache settings can be specified declaratively in a page or
configuration file, or programmatically using a cache API

It is possible to cache pages based on the values of query
string parameters or form variables

ASP.NET allows to write code during testing if cached content
should be served

It is possible to cache a portion of a page

Setting the Cacheability

%@ OutputCache Duration="60" VaryByParam='"None"%>

Or

<caching>
<outputCacheSettings>
<outputCacheProfiles>
<add name="Cache30Seconds" duration="30"
varyByParam="none" />
</outputCacheProfiles>
</outputCacheSettings>
</caching>

<%@ OutputCache CacheProfile="Cache30Seconds" %>

Or

Response.Cache.SetCacheability (HttpCacheability.Public)

Checking the Validity

public static void ValidateCacheOutput (HttpContext context,
Object data, ref HttpValidationStatus status) ({

if (context.Request.QueryString["Status"] !'= null) {
string pageStatus = context.Request.QueryString["Status"];
if (pageStatus == "invalid") {
status = HttpValidationStatus.Invalid;
} else if (pageStatus == "ignore") {
status = HttpValidationStatus.IgnoreThisRequest;
} else {
status = HttpValidationStatus.Valid;
} else {

status = HttpValidationStatus.Valid;

protected void Page Load(object sender, EventArgs e) ({
Response.Cache.AddValidationCallback (
new HttpCacheValidateHandler (ValidateCacheOutput),
null) ;

Using Dependencies

Dependency on a file or files

protected void Page Load(object sender, EventArgs e) ({
string fileDependencyPath = Server.MapPath ("TextFilel.txt");
Response.AddFileDependency (fileDependencyPath) ;

Response.Cache. SetExpires (DateTime.Now.AddSeconds (60)) ;
Response.Cache.SetCacheability (HttpCacheability.Public) ;
Response.Cache.SetValidUntilExpires (true) ;

Dependency on other item in the cache

protected void Page Load(object sender, EventArgs e) ({
Response.AddCacheItemDependency ("ProcessIntensiveReport") ;
Response.Cache. SetExpires (DateTime.Now.AddSeconds (60)) ;
Response.Cache.SetCacheability (HttpCacheability.Public) ;
Response.Cache.SetValidUntilExpires (true) ;

Caching Application Data

The cache class implements a powerful, easy-to-use caching
mechanism that allows to store objects in memory that
require extensive server resources to create

Available features:

= Expiration policies (both absolute and sliding expiration time can
be used)

= A file or key dependency
= The SglCacheDependency class can be used to create a

cache item dependency on a table or row in a database

= The CacheDependency class is unsealed (it allows to
create custom dependencies)

m Priorities

Adding Items to Application Cache

Cache["CacheIteml"] = "Cached Item 1";

string[] dependencies = { "CacheItem2" };
Cache.Insert("CachelItem3", "Cached Item 3",
new System.Web.Caching.CacheDependency (null, dependencies))

Cache.Insert("Cacheltem4", "Cached Item 4",
new System.Web.Caching.CacheDependency (
Server .MapPath ("XMLFile.xml"))) ;

Cache.Insert("CacheItem7", '"Cached Item 7",
null, System.Web.Caching.Cache.NoAbsoluteExpiration,
new TimeSpan (0, 10, 0));

Cache.Insert("CacheItem8", "Cached Item 8",
null, System.Web.Caching.Cache.NoAbsoluteExpiration,
System.Web.Caching.Cache.NoSlidingExpiration,
System.Web.Caching.CacheItemPriority.High, null);

ASP.NET

Reading and Deleting Items

Reading an item from the cache:

212

string cachedString;

if (Cache["CacheItem"] '= null) {
cachedString = (string)Cache['"CacheItem"];
} else {

Cache.Insert("CacheItem", "Hello, World.");
cachedString = (string)Cache['"CacheItem"];

Deleting an item from the cache:

Cache.Remove ("MyDatal") ;

Krzysztof Mossakowski http://www.mini.pw.edu.pl/~mossakow
.

ASP.NET 213

Items Removing Notification

HttpContext.Current.Cache.Add ("MyReport", CreateReport(), null,
DateTime.MaxValue, new TimeSpan(0, 1, 0),
System.Web.Caching.CacheItemPriority.Default,
ReportRemovedCallback) ;

public static void ReportRemovedCallback (String key,
object value, CachelItemRemovedReason removedReason) {
_reportRemovedFromCache = true;
CacheReport() ;

Krzysztof Mossakowski http://www.mini.pw.edu.pl/~mossakow

Caching Multiple Versions of a Page

ASP.NET allows to cache multiple versions of the same page
in the output cache

The @outputCache directive includes four attributes that
enable to cache multiple versions of the page output
= VaryByParam — dependency on the query string
® VaryByControl — dependency on a control value
® VaryByHeader — dependency on the request's HTTP header
® VaryByCustom — by a browser type or by a custom string

%@ OutputCache Duration="60" VaryByParam="City" %>

Response.Cache.SetExpires (DateTime.Now.AddMinutes (1.0)) ;
Response.Cache.SetCacheability (HttpCacheability.Public) ;
Response.Cache.SetValidUntilExpires (true) ;
Response.Cache.VaryByParams|["Zip"] = true;

Caching Portions of a Page

The control caching (aka fragment caching) allows to cache
parts of the page output

= Caching policies for the control can be created declaratively
using the @outputCache directive or by using the

PartialCachingAttribute in the code

<%@ OutputCache Duration="120" VaryByParam="None" %>

[PartialCaching (120)]
public partial class CachedControl : System.Web.UI.UserControl ({

}

Post-Cache Substitution

ASP.NET postback substitution allows to cache a page but
substitute some content dynamically

= The entire page is output cached with specific parts marked as
exempt from caching

There are three ways to implement post-cache substitution:
= Declaratively, using the substitution control
= Programmatically, using the Substitution control API
= Implicitly, using the AdRotator control

= The AdRotator control placed on a cached page renders
unique advertisements on each request

= It implements support for post-cache substitution internally

ASP.NET Performance Issues

Session state — if the application does not need it, disable it

View state — by default enabled for all controls, it consumes
bandwidth and takes time to process

Caching — use output and data caching whenever possible

Server controls — if you do not need to manipulate a control
programmatically, do not use a server control (use a classic
HTML control instead)

Web gardening and Web farming — at the least, locate the
Web server on one machine and the database server on
another

Round trips — most validation and data manipulations can
occur on the client browser

ASP.NET 218

Security

Krzysztof Mossakowski http://www.mini.pw.edu.pl/~mossakow

Basic Security Practices

General Web application security recommendations

Back up often and keep your backups physically secure
Keep your Web server computer physically secure
Use the Windows NTFS file system, not FAT32

Secure the Web server computer and all computers on the same
network with strong passwords

Secure IIS

Close unused ports and turn off unused services

Run a virus checker that monitors inbound and outbound traffic
Use a firewall

Install the latest security patches from Microsoft and other
vendors

Use Windows event logging and examine the logs frequently for
suspicious activity

Basic Security Practices cont.

Run applications with least privileges
= Do not run your application with the identity of a system user
(administrator)
= Run the application in the context of a user with the minimum
practical privileges
m Set permissions on all the resources required for your
application
= Keep files for your Web application in a folder below the
application root

Know your users

= If your application is an intranet application, configure it to use
Windows integrated security

= If you need to gather credentials from the user, use one of the
ASP.NET authentication strategies

Basic Security Practices cont.

Guard against malicious user input

= Filter user input to check for HTML tags, which might contain
script

= Never echo (display) unfiltered user input, always use HTML
encoding

= Never store unfiltered user input in a database
= If you want to accept some HTML from a user, filter it manually

= Do not assume that information you get from the HTTP request
header is safe

= Use safeguards for query strings, cookies, and so on

= If possible, do not store sensitive information in a place
accessible from the browser, such as hidden fields or cookies

Basic Security Practices cont.

Access database securely
= Use the inherent security of your database to limit who can
access database resources
= If practical in your application, use integrated security
= If your application involves anonymous access, create a

single user with very limited permissions, and perform
queries by connecting as this user

= Do not create SQL statements by concatenating strings that
involve user input
= Create a parameterized query and use user input to set
parameter values

= If you must store a user name and password somewhere to use
as the database login credentials, store them in the Web.config
file and secure the file with protected configuration

ASP.NET 223

Basic Security Practices cont.

Create safe error messages

= Do not write error messages that echo information that might
be useful to malicious users, such as a user name

= Configure the application not to show detailed errors to users
m Use the customErrors configuration element to control who
can view exceptions from the server

= Create custom error handling for situations that are prone to
error, such as database access

Krzysztof Mossakowski http://www.mini.pw.edu.pl/~mossakow

Basic Security Practices cont.

Keep sensitive information safely

= If your application transmits sensitive information between the
browser and the server, consider using the Secure Sockets
Layer (SSL)

= Use protected configuration to secure sensitive information in
configuration files such as the Web.config or
Machine.config files

= If you must store sensitive information, do not keep it in a Web
page, even in a form that you think people will not be able to
see it (such as in server code)

= Use the strong encryption algorithms supplied in the
System. Security.Cryptography Nnamespace

ASP.NET 225

Basic Security Practices cont.

Use cookies securely
= Do not store any critical information in cookies

m Set expiration dates on cookies to the shortest practical time
you can; avoid permanent cookies if possible
= Consider encrypting information in cookies

= Consider setting the Secure and HttpOnly properties on the
cookie to true (to use SSL and don't allow to access the cookie

through a client-side script)

Krzysztof Mossakowski http://www.mini.pw.edu.pl/~mossakow

ASP.NET 226

Basic Security Practices cont.

Guard against denial-of-service threats

= Use error handling, include a finally block in which you release
resources in case of failure

= Configure IIS to use process throttling

m Test size limits of user input before using or storing it
= Put size safequards on database queries

= Put a size limit on file uploads

Krzysztof Mossakowski http://www.mini.pw.edu.pl/~mossakow

ASP.NET 227

Configuration Management

Krzysztof Mossakowski http://www.mini.pw.edu.pl/~mossakow

ASP.NET 228

ASP.NET Configuration System

Using the features of the ASP.NET configuration system, the
following elements can be configured:

= An entire server
= An ASP.NET application
= Individual pages
= Application subdirectories
Configuration files
= The root of the ASP.NET configuration hierarchy is:

systemroot\Microsoft.NET\Framework\version\CONFIG\Web.config

= Web.config files can appear in multiple directories in ASP.NET
applications

Krzysztof Mossakowski http://www.mini.pw.edu.pl/~mossakow

Configuration Inheritance

All configuration files that are located in the virtual directory
path for the requested URL are used to compute the
configuration settings for the request

= The most local configuration settings override settings in parent
configuration files

= The configuration settings can be locked by adding the
allowOverride attribute to the location element

<configuration>
<location path="applicationl" allowOverride="false">
<system.web>
<trust level="High" />
</system.web>
</location>
</configuration>

= The location element allows to apply configuration settings to
specific folders and files

Configuration Tools

ASP.NET MMC (Microsoft Management Console) snap-in
= Available as the properties window in the IIS configuration

= It provides a convenient way to manipulate ASP.NET
configuration settings at all levels on a local or remote Web
server

Command-line tools
= aspnet_compiler.exe — allows to compile the application

m aspnet_regiis.exe — allows to easily update the script maps for
an ASP.NET application

ASP.NET 231

ASP.NET MMC Snap-In

I nfo rm atl O n : {2 ASP_NET Configurati

Generall Custom Errors |

m The ASP.NET version, virtual | mooe . —
- = Magimum 10 threads: |2D—
pa t h J fl I e I Oca tl O n / ‘ Response restart deadlock interval: [IJD_U_BW

[~ Process Model -

file creation date, file —— |

Timeoul t: Infinite v | Idle timeout: Infinite v

m O d i fi Cati O n d a te e !22000005—;1 Request limit: Infinite

Request queue limit:

- Restart queue limit: l‘l 0 v

Settl n g S . LClient connected check: 100:00:05 v
L]

COM authentication level: Connect Y,

COM impersonation level: Impersonate v

= Connection strings, ot -
app settings, custom errors, | wew e o
threading model,
process model, authorization, |m s Tl
authentication, compilation,

globalization, identity, state management, locations

Krzysztof Mossakowski http://www.mini.pw.edu.pl/~mossakow

ASP.NET Configuration API

The Configuration class represents configurations of
computers, .NET client applications, Web directories, and
resources that are stored in Web directories

= In ASP.NET 2.0 the methods of the
WebConfigurationManager should be used to gain access

to an instance of the Configuration class

= The specified logical entity can exist on the local computer or on
a remote server

WebConfigurationManager Key Members

AppSettings, ConnectionStrings, GetSection|(),
GetWebApplicationSection () — gets data for the

current Web application's default configuration
OpenMachineConfiguration (),

OpenMappedMachineConfiguration () — gets the
Configuration object representing the machine-

configuration file
OpenWebConfiguration(),

OpenMappedWebConfiguration () — gets the
Configuration object representing the Web-application

configuration file

Using WebConfigurationManager

System.Configuration.Configuration config =
WebConfigurationManager.OpenWebConfiguration("/configTest")
as System.Configuration.Configuration;

System.Configuration.Configuration config =
WebConfigurationManager.OpenMachineConfiguration() ;

AppSettingsSection appSettingsSection =
WebConfigurationManager.GetSection ("appSettings")
as AppSettingsSection;

string s = (string)WebConfigurationManager .AppSettings["theKey"];

ConnectionStringsSection connectionStringsSection =
WebConfigurationManager.GetSection('"connectionStrings",
"/configTest") as ConnectionStringsSection;

Configuration config =
WebConfigurationManager.OpenWebConfiguration (" /MyApp") ;

config.SaveAs ("c:\\MyApp.web.config",
ConfigurationSaveMode.Full, true);

ASP.NET 235

Packaging and Deploying

Krzysztof Mossakowski http://www.mini.pw.edu.pl/~mossakow

Deployment Pieces

Parts of the Web application which need deployment consideration when
moving the application:

.aspx pages

The code-behind pages for the .aspx pages (.aspx.vb or .aspx.cs files)
User controls (.ascx)

Web service files (.asmx and .wsdl files)

.htm or .html files

Image files such as .jpg or .gif

ASP.NET system folders such as App_Code and App_Themes
JavaScript files (.js)

Cascading Style Sheets (.css)

Configuration files such as the web.config file

.NET components and compiled assemblies

Data files such as .mdb files

ASP.NET 237

Steps Before Deploying
Turn off debugging in the Web.config file

<configuration xmlns="http://schemas.microsoft.com/
.NetConfiguration/v2.0">

<system.web>
<compilation debug="false” />

</system.web>

</configuration>

Build the application in Release mode

Krzysztof Mossakowski http://www.mini.pw.edu.pl/~mossakow

ASP.NET 238

Methods of Deploying Web Applications

XCopy

Visual Studio 'Publish Web Site' option
= Optional precompilation of all application's files

Using Windows Installer

= Installation, removal, and management of applications
= Automatic repair of existing installations

= Transactional operations

= Installation on demand

= [nstallation in locked-down environment

= 'Web Setup Project’ is available in Visual Studio

Krzysztof Mossakowski http://www.mini.pw.edu.pl/~mossakow

