.NET Programming

XML Web Services

MSDN
M. MacDonald, M. Szpuszta, Pro ASP.NET 3.5 in C# 2008. Includes Silverlight 2,
3rd Ed., 2009, Apress

Krzysztof Mossakowski http://www.mini.pw.edu.pl/~mossakow

XML Web Services 2

Contents

XML Web Services Overview

Creating XML Web Services

Publishing and Deployment XML Web Services
XML Web Services Clients

Exceptions in XML Web Services

SOAP Headers

SOAP Extensions

Krzysztof Mossakowski http://www.mini.pw.edu.pl/~mossakow
B U

S,
XML Web Services 3

XML Web Services
Overview

Krzysztof Mossakowski http://www.mini.pw.edu.pl/~mossakow
B U

XML Web Services 4

Web Services

= A Web service is an application that exposes a
Web-accessible API

This application can be invoked programmatically over the Web
= The Web services platform is a set of standards that
applications follow to achieve interoperability via the Web

Any programming language and any platform can be used to
write the Web service, and it is widely accessed according to
the Web services standards

= The benefits of Web services:
Web services are simple
Web services are loosely coupled
Web services are stateless
Web services are firewall-friendly

Krzysztof Mossakowski http://www.mini.pw.edu.pl/~mossakow
B U

XML Web Services 5

XML Web Services Infrastructure

1 Directory
{http:/fuddi.micresoft.com)
The client attempts to locate an XML Web service. ;...--/?'

A URL to a discovery document is linked,

UDDI {or other
2 Discovery directory
(http: /fwww.contoso.com/default.disco) service)

The client requests the discovery document.

The discovery document is returned. \
3 Description N

(hEtp: fwww.contoso.com/MyWebService, WSDL)
The client requests the service description. _,.»-’

~
.

AML Web

service client \
\ The service description is returned. P

XML Web
4 Wire Format service

The client reguests the XML Web service,

The sarvice response is returned.

Krzysztof Mossakowski http://www.mini.pw.edu.pl/~mossakow

XML Web Services 7

XML Web Services Standards

WSDL — used to create an interface definition for a web
service

SOAP — the message format used to encode information
(such as data values) before sending it to a web service

HTTP — the protocol over which all web service
communication takes place.

DISCO — used to create discovery documents that provide
links to multiple web service endpoints

UDDI (Universal Description, Discovery, and Integration) — a
standard for creating business registries that catalogue
companies, the web services they provide, and the
corresponding URLs for their WSDL contracts

Krzysztof Mossakowski http://www.mini.pw.edu.pl/~mossakow
B U

XML Web Services 8

Wire Formats

m HTTP-GET and HTTP-POST are standard protocols that use

HTTP verbs for the encoding and passing of parameters as
name/value pairs

HTTP-GET passes its parameters in the form of url encoded text
appended to the URL of the server handling the request
In HTTP-POST the name/value pairs are passed inside the
actual HTTP request message
= SOAP is a simple, lightweight XML-based protocol for
exchanging structure and type information on the Web

The overall design goal of SOAP is to keep it as simple as
possible, and to provide a minimum of functionality

The protocol defines a messaging framework that contains no
application or transport semantics

Krzysztof Mossakowski http://www.mini.pw.edu.pl/~mossakow

XML Web Services 10

SOAP Examples

<soap:Envelope
xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">
<soap:Body>
<getProductDetails xmlns="http://warehouse.example.com/ws">
<productID>827635</productID>
</getProductDetails>
</soap:Body>
</soap:Envelope>

<soap:Envelope
xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">
<soap:Body>
<getProductDetailsResponse xmlns="http://warehouse.example.com/ws">
<getProductDetailsResult>
<productName>Toptimate 3-Piece Set</productName>
<productID>827635</productID>
<description>3-Piece luggage set.</description>
<price>96.50</price>
<inStock>true</inStock>
</getProductDetailsResult>
</getProductDetailsResponse>
</soap:Body>
</soap:Envelope>

XML Web Services 11

XML Web Service Lifetime

Phase 1 | SoaP | Phase 2
Serialize | request XML Deserialize
| | SOAF
| Wl message
| |
| |
® l |
. | | XML Web
O nbjgt | Network | (O— service
| |
Welb
' | Servear
| |
| |
' | B xmL
| |
Phase 4 SOAP I | SOAP Phase 3
Deserialize message SOAF message Serialize
| response |

Krzysztof Mossakowski http://www.mini.pw.edu.pl/~mossakow

S,
XML Web Services 12

Creating XML Web Services

Krzysztof Mossakowski http://www.mini.pw.edu.pl/~mossakow
B U

XML Web Services 13

Building an XML Web Service

1. Create an .asmx file and declare a Web service using the
@WebService directive

This directive specifies the class that implements the Web
service and the programming language that is used in the
implementation

<%@ WebService Language="C#" Class="WebServicel" %> I

If the class resides in a separate assembly, it must be placed in
the \Bin directory under the Web application where the Web

service resides

<%@ WebService Language="C#"
Class="MyName.WebServicel, MyAssembly" %>

Krzysztof Mossakowski http://www.mini.pw.edu.pl/~mossakow
B U

XML Web Services

Building an XML Web Service cont.

2. Create a class that implements the Web service
= The class can optionally derive from the WwebService class

= Deriving from the WebService class allows to gain access to
the common ASP.NET objects, such as Application,
Session, User, and Context

14

<%@ WebService Language="C#" Class="WebServicel" %>

using System;
using System.Web.Services;

public class WebServicel :|WebService

Krzysztof Mossakowski http://www.mini.pw.edu.pl/~mossakow

XML Web Services 15

Building an XML Web Service cont.

3. Optionally, apply the webServiceAttribute attribute to
the class implementing the Web service
It can be used to set the default XML namespace for the Web
service
The default namespace, http://tempuri.org, should be

changed before the XML Web service is made publicly
consumable

<%@ WebService Language="C#" Class="WebServicel" %>

using System;
using System.Web.Services;

[WebService (Namespace = "http://www.contoso.com/")]

public class WebServicel : WebService

Krzysztof Mossakowski http://www.mini.pw.edu.pl/~mossakow
B U

XML Web Services 16

Building an XML Web Service cont.

4. Define the Web service methods that compose the
functionality of the Web service

Web service method is a method that can be communicated
with over the Web

All Web service methods must be public and have the
WebMethod attribute applied to them

<%@ WebService Language="C#" Class="WebServicel" %>

using System;
using System.Web.Services;

[WebService (Namespace = "http://www.contoso.com/")]
public class WebServicel : WebService {
[WebMethod]

public |[long Multiply(int a, int b)
{

return a * b;

}

Krzysztf w

XML Web Services 17

WebServiceAttribute Members

®m Description — a descriptive message for the Web service

Displayed to prospective consumers when description
documents are generated

= Name — the name of the Web service
Used in a WSDL document

= Namespace - used as the default namespace for XML
elements directly pertaining to the XML Web service

Krzysztof Mossakowski http://www.mini.pw.edu.pl/~mossakow
B U

XML Web Services 18

WebMethodAttribute Members

Buf ferResponse — Whether the response for this request is
buffered

CacheDuration — the number of seconds the response
should be held in the cache

®m Description — a descriptive message
m EnableSession — whether session state is enabled for an

XML Web service method

In order for an XML Web service to maintain session state for a
client, the client must persist the cookie

MessageName — can be used to alias method or property
names (e.g. to uniquely identify polymorphic methods)

The default is the name of the XML Web service method
TransactionOption — indicates the transaction support

Krzysztof Mossakowski http://www.mini.pw.edu.pl/~mossakow

XML Web Services 19

Asynchronous XML Web Service Methods

= Asynchronous Web service methods should be used to
improve performance of Web service methods that invoke
long-running methods that block their thread
= Potential reasons for using asynchronous Web methods
Communicating with other Web services
Accessing remote databases
Performing network I/O
Reading and writing to large files

= Regardless of whether a Web service method is implemented
asynchronously, clients can communicate with it
asynchronously

= The implementation of an asynchronous Web service method
has no impact on the HTTP connection between the client
and the server

Krzysztof Mossakowski http://www.mini.pw.edu.pl/~mossakow

XML Web Services 24

Authentication Options

Windows — Basic: the user name and password are sent in
base 64-encoded strings in plain text

= Windows — Basic over SSL: using Secure Sockets Layer
= Windows — Digest: uses hashing to transmit client credentials

in an encrypted manner (not supported by other platforms)

Windows — Integrated Windows: uses a cryptographic
exchange with the user's Microsoft Internet Explorer Web
browser

Windows — Client Certificates: requires each client to obtain a
certificate from a mutually trusted certificate authority

= Forms: not supported by Web services
= SOAP headers — Custom: user credentials are passed within

the SOAP header of the SOAP message

Krzysztof Mossakowski http://www.mini.pw.edu.pl/~mossakow

XML Web Services 25

Authentication Using SOAP Headers

= SOAP headers are a great way of passing out-of-band or
information not related to the semantics of a Web service

= The Header element is optional and can thus be processed
by the infrastructure, e.qg. to provide custom authentication

m To use SOAP for custom authentication

A Web service client would send its credentials to the Web
service by adding the expected SOAP header with the client
credentials

A Web service must do two things:

= Specify that it expects the SOAP header containing the
authentication credentials

= Authorize the client access to the Web service

Krzysztof Mossakowski http://www.mini.pw.edu.pl/~mossakow

S,
XML Web Services 26

Publishing and Deployment
XML Web Services

Krzysztof Mossakowski http://www.mini.pw.edu.pl/~mossakow
B U

XML Web Services 27

Deploying XML Web Services

= Deploying a Web service involves copying the .asmx file and
any assemblies used by the Web service
= The following items are deployed to a Web server:

Web application directory — this directory should be flagged as
an IIS Web application

.asmkx file — acts as the base URL for clients

.disco file — optional, acts as a discovery mechanism for the
Web service

Web.config file — optional
\Bin directory — contains the binary files for the Web service

Krzysztof Mossakowski http://www.mini.pw.edu.pl/~mossakow
B U

XML Web Services 28

Web Service Discovery

= Web service discovery is the process of locating and
interrogating Web service descriptions, which is a preliminary
step for accessing a Web service

= There are three ways a potential Web service client can
access a discovery document:

Static discovery file: publish a discovery file, typically with a
.disco file name extension

?disco query string: any Web service running on ASP.NET can
have a discovery document dynamically generated for it

.vsdisco request: dynamic discovery can be turned on to allow
Web service client applications to discover all available Web
services in the folder and subfolders corresponding to a request
URL

Krzysztof Mossakowski http://www.mini.pw.edu.pl/~mossakow
B U

XML Web Services 29

Using a .disco File

1. Create and publish a .disco file

<?xml version="1.0"?>
<discovery xmlns="http://schemas.xmlsoap.org/disco/">
<discoveryRef ref="/Folder/Default.disco"/>
<contractRef ref="http://MyWebServer/UserName.asmx?WSDL"
docRef="Service.htm"
xmlns="http://schemas.xmlsoap.org/disco/scl/"/>
<schemaRef ref="Schema.xsd"
xmlns="http://schemas.xmlsoap.org/disco/schema/"/>

</discovery>

2. Optionally, create an HTML page with a link to the discovery
document

Users can then supply URLs like the following during the
discovery process

<HEAD>
<link type='text/xml' rel='alternate' href='MyWebService.disco'/>
</HEAD>

Krzysztof Mossakowski http://www.mini.pw.edu.pl/~mossakow
B U

XML Web Services 30

Enabling Dynamic Discovery

<configuration>
<system.web>
<httpHandlers>
<add verb="*" path="*. vsdisco"
type="System.Web.Services.Discovery.DiscoveryRequestHandler,
System.Web.Services, Version=1.0.3300.0,
Culture=neutral,
PublicKeyToken=b03f5f7f11d50a3a"
validate="false"/>
</httpHandlers>
</system.web>
</configuration>

= When dynamic discovery is turned on, all Web services and
discovery documents existing on the Web server beneath the
requested URL are discoverable

Krzysztof Mossakowski http://www.mini.pw.edu.pl/~mossakow
B U

R ——
XML Web Services 34

XML Web Services Clients

Krzysztof Mossakowski http://www.mini.pw.edu.pl/~mossakow
B U

XML Web Services 35

Web Services Discovery

= When the URL to a discovery document residing on a Web
server is known, a developer of a client application can use a
Web service discovery to:

Learn that a Web service exists
Learn what its capabilities are
Learn how to properly interact with it
= Through the process of Web service discovery, a set of files is

downloaded to the local computer containing details about
the existence of Web services

Service descriptions, XSD schemas, discovery documents

Disco /out:location /username:user /password:mypwd
/domain:mydomain <url>

Krzysztof Mossakowski http://www.mini.pw.edu.pl/~mossakow
B U

XML Web Services 36

Creating an XML Web Service Proxy

= As long as a service description exists, a proxy class can be
generated if the service description conforms to WSDL

= With a service description, a proxy class can be created using
the Wsdl.exe tool

Wsdl /language:language /protocol:protocol /namespace:myNameSpace
/out:filename /username:username /password:password
/domain:domain <url or path>

language: CS, VB, JS, VIS, CPP
protocol: SOAP, SOAP 1.2, HTTP-GET, HTTP-POST
namespace: the namespace of the generated proxy

username and password: used when connecting to a Web
server that requires authentication

Krzysztof Mossakowski http://www.mini.pw.edu.pl/~mossakow
B U

XML Web Services 37

Generated Proxy Class

= A single source file is generated in the specified language

It contains a proxy class exposing both synchronous and
asynchronous methods for each Web service method of the
Web service

Each method of the generated proxy class contains the
appropriate code to communicate with the Web service method

If an error occurs during communication with the Web service
and the proxy class, an exception is thrown

Krzysztof Mossakowski http://www.mini.pw.edu.pl/~mossakow
B U

XML Web Services 38

Creating Clients for XML Web Services

Create a proxy class for the Web service
Reference the proxy class in the client code
Create an instance of the proxy class in the client code

If anonymous access has been disabled for the Web
application hosting the Web service, set the Credentials

property of the proxy class

5. Call the method on the proxy class that corresponds to the
Web service method with which you want to communicate

I

Krzysztof Mossakowski http://www.mini.pw.edu.pl/~mossakow

XML Web Services

Asynchronous Communication

= A Web service does not have to be specifically written to
handle asynchronous requests to be called asynchronously

= There are two design patterns that allow to call a Web service
method asynchronously

The Begin/End pattern
= Using the callback technique
= Using the wait technique

The event-driven asynchronous programming pattern (available
in the .NET Framework 2.0)

39

Krzysztof Mossakowski http://www.mini.pw.edu.pl/~mossakow

XML Web Services 42

The Event-Driven Technique

private void callButton Click(object sender, EventArgs e)

{

BarcodeService.BarcodeSvcSoapClient service = new
BarcodeClient.BarcodeService.BarcodeSvcSoapClient () ;

service.CreateBarcodeCompleted += new EventHandler
<BarcodeClient.BarcodeService.CreateBarcodeCompletedEventArgs>
(service CreateBarcodeCompleted) ;

service.CreateBarcodeAsync (10, 10, 10, 10, "Title", 10, true,
"one", "two", "three", "four", "five", 24, 8, true, "gif");

void service CreateBarcodeCompleted(object sender,
BarcodeClient.BarcodeService.CreateBarcodeCompletedEventArgs e)

{

byte[] buffer = e.Result;

MemoryStream stream = new MemoryStream(buffer) ;
Bitmap bmp = new Bitmap (stream) ;
pictureBox.Width = bmp.Width;
pictureBox.Height = bmp.Height;
pictureBox.Image = bmp;

XML Web Services 43

Testing Web Methods in a Browser
= Using HTTP-GET

http://www.contoso.com/math.asmx/Subtract?numl=10&num2=>5 I

= Using HTTP-POST

<form method="POST"
action='http://www.contoso.com/math.asmx/Subtract'>

<input type="text" size="5" name='numl'\"> -

<input type="text" size="5" name='num2'\"> =

<input type="submit" wvalue="Subtract">
</form>

http://www.mini.pw.edu.pl/~mossakow

Krzysztof Mossakowski
B UL

S,
XML Web Services 44

Exceptions in XML Web Services

Krzysztof Mossakowski http://www.mini.pw.edu.pl/~mossakow
B U

XML Web Services 45

SOAP Faults

= Exceptions thrown by a Web service method created using
ASP.NET are sent back to the client in the form of a SOAP
fault

= A SOAP fault is @ Fault XML element within a SOAP
message that specifies when an error occurred

It may contain details such as the exception string and the
source of the exception

= Fortunately, both clients and Web services created using
ASP.NET do not populate or parse the Fault XML element

directly

The common design pattern for throwing and catching
exceptions in the .NET Framework can be used

Krzysztof Mossakowski http://www.mini.pw.edu.pl/~mossakow
B U

R ——
XML Web Services 46

SoapException

= A Web service can throw either a generic SoapException
or an exception specific to the problem

ASP.NET serializes the exception into a valid SOAP message by
placing the exception into a SOAP Fault element

When the SOAP message is deserialized by a client, the SOAP
fault is converted to a SoapException exception

= The exception details are placed in the Message property

= When unhandled exception occurs while executing the Web
service method, the exception is caught by ASP.NET and
thrown back to the client

A .NET Framework client receives a SoapException with the
specific exception placed in the InnerException property

Krzysztof Mossakowski http://www.mini.pw.edu.pl/~mossakow
B U

XML Web Services 47

SoapHeaderException

= A SoapHeaderException is thrown when an exception
case was detected while processing a SOAP Header element

This exception is translated into a Fault element placed inside
the response’'s Header element

A .NET Framework client receives the SoapHeaderException

Krzysztof Mossakowski http://www.mini.pw.edu.pl/~mossakow
B U

S,
XML Web Services 48

SOAP Headers

Krzysztof Mossakowski http://www.mini.pw.edu.pl/~mossakow
B U

XML Web Services 49

Defining SOAP Headers

public class MyHeader : SoapHeader ({
public string Login;
public string Password;

}

[WebService (Namespace = "http://www.contoso.com")]

public class MyWebService {
// Add a member variable of the type deriving from SoapHeader.
public MyHeader myHeaderMemberVariable;

// Apply a SoapHeader attribute.
[WebMethod]
[SoapHeader ('"'myHeaderMemberVariable")]
public string MyWebMethod () ({
// Process the SoapHeader.
if (myHeaderMemberVariable != null) {
return String.Format("Login: {0}, Password: {1}",
myHeaderMemberVariable.Login,
myHeaderMemberVariable.Password) ;

} else {
return "-- no MyHeader --";

XML Web Services 50

Building a Client That Processes Headers

class Program
{
static void Main(string[] args)
{
Service.MyHeader myHeader = new Service.MyHeader() ;
myHeader.Login = "John";
myHeader .Password = "Kovalsky";

Service.MyWebService srv = new Service.MyWebService() ;
srv.MyHeaderValue = myHeader;
string s = srv.MyWebMethod() ;

Console.Write(s) ;

Krzysztof Mossakowski http://www.mini.pw.edu.pl/~mossakow

XML Web Services 51

Changing a SOAP Header's Recipients

public class MyHeader : SoapHeader
{

public string Username;
public string Password;

}

[WebService (Namespace = "http://www.contoso.com")]
public class MyWebService : WebService

{
public MyHeader myOutHeader;

[WebMethod]
[SoapHeader ("myOutHeader",

Direction = SoapHeaderDirection.Out)]
public void MyOutHeaderMethod ()

{

// Return the client's authenticated name.
myOutHeader .Username = User.Identity.Name;

Krzysztof Mossakowski http://www.mini.pw.edu.pl/~mossakow
B U

XML Web Services 52

Handling Unknown SOAP Headers

public class MyWebService
{

public SoapUnknownHeader|[] unknownHeaders;

[WebMethod]
[SoapHeader ("unknownHeaders")]
public string MyWebMethod ()
{
foreach (SoapUnknownHeader header in unknownHeaders) ({
// Check to see if this is a known header.

if (header.Element.Name == "MyKnownHeader") ({
header.DidUnderstand = true;
} else {

// For those headers that cannot be
// processed, set DidUnderstand to false.
header.DidUnderstand = false;

Krzysztof Mossakowski http://www.mini.pw.edu.pl/~mossakow
B U

S,
XML Web Services 53

SOAP Extensions

Krzysztof Mossakowski http://www.mini.pw.edu.pl/~mossakow
B U

XML Web Services 54

SOAP Extensions

= SOAP extensions allow developers to augment the
functionality of a Web service

For instance, an encryption or compression algorithm can be
implemented to run with an existing Web service

= Typically, when a SOAP extension modifies the contents of a
SOAP message, the modifications must be done on both the
client and the server

For instance, if the SOAP message is not decrypted, then the

ASP.NET infrastructure cannot deserialize the SOAP message
into an object

Krzysztof Mossakowski http://www.mini.pw.edu.pl/~mossakow
B U

XML Web Services 55

Extending the SoapExtension Class

m The ChainStream () method is passed a Stream object
and returns a Stream object
A SOAP extension should read from the Stream passed into

ChainStream () and write to the Stream returned from
ChainStream/()

Therefore, it is important within the ChainStream () method
to assign both stream references to member variables
m The GetInitializer () and Initialize () methods are

used to initialize internal data, based on the Web service or
Web service method it is applied to

= Actual extended processing beyond the standard SOAP
processing is performed by the ProcessMessage () method

Krzysztof Mossakowski http://www.mini.pw.edu.pl/~mossakow
B U

XML Web Services 56

Implementing the SOAP Extension

= There are two ways to run a SOAP extension on either a
client or server application:

Configuring the application to run the extension (it can be done
for all Web methods or all Web services)

<configuration>
<system.web>
<webServices>
<soapExtensionTypes>
<add type="Contoso.MySoapExtension, Version=2.0.0.0,
Culture=neutral, PublicKeyToken=31bf3856ad364e35"
priority="1"
group="0"/>
</soapExtensionTypes>
</webServices>
</system.web>
</configuration>

Creating a custom attribute that is applied to a Web service
method

Krzysztof Mossakowski http://www.mini.pw.edu.pl/~mossakow
B U

XI

1 WAlnl CAsrienes l:7

public class TraceExtension : SoapExtension ({

Stream oldStream, newStream;
string filename;

public override Stream ChainStream(Stream stream) {
oldStream = stream;
newStream = new MemoryStream() ;
return newStream;

}

// When the SOAP extension is accessed for the first time,
// the XML Web service method it is applied to is accessed to
// store the file name passed in, using the corresponding
// SoapExtensionAttribute.
public override object GetInitializer (LogicalMethodInfo methodInfo,
SoapExtensionAttribute attribute) {
return ((TraceExtensionAttribute) attribute) .Filename;

}

// The SOAP extension was configured to run using a

// configuration file instead of an attribute applied to a

// specific Web service method.

public override object GetInitializer (Type WebServiceType) ({
return "C:\\" + WebServiceType.FullName + ".log";

}

XML Web Services

//

// Receive the file name stored by GetInitializer and store it
// in a member variable for this specific instance.
public override void Initialize (object initializer) ({

filename = (string) initializer;

}

// If the SoapMessageStage is such that the SoapRequest or
// SoapResponse is still in the SOAP format to be sent or

// received, save it out to a file.

public override void ProcessMessage (SoapMessage message) ({

switch (message.Stage) {
case SoapMessageStage.BeforeSerialize:

break;

case SoapMessageStage.AfterSerialize:
WriteOutput (message) ; // custom method
break;

case SoapMessageStage.BeforeDeserialize:
WriteInput (message) ; // custom method
break;

case SoapMessageStage.AfterDeserialize:
break;

default:

throw new Exception('"invalid stage") ;

XF//

// Create a SoapExtensionAttribute for the SOAP Extension that
// can be applied to a Web service method.
- [AttributeUsage (AttributeTargets.Method)]
public class TraceExtensionAttribute : |SoapExtensionAttribute |{

private string filename = "c:\\log.txt";
private int priority;

public override Type ExtensionType ({
get { return typeof (TraceExtension); }

}

public override int Priority ({
get { return priority; }
set { priority = value; }

public string Filename {
get { return filename; }
set { filename = value;

Krzysztof Mossakowski http://www.mini.pw.edu.pl/~mossakow
B U

