
.NET Programming

http://www.mini.pw.edu.pl/~mossakowKrzysztof Mossakowski

XML Web Services

MSDN
M. MacDonald, M. Szpuszta, Pro ASP.NET 3.5 in C# 2008. Includes Silverlight 2,

3rd Ed., 2009, Apress

2XML Web Services

http://www.mini.pw.edu.pl/~mossakowKrzysztof Mossakowski

Contents

 XML Web Services Overview

 Creating XML Web Services

 Publishing and Deployment XML Web Services

 XML Web Services Clients

 Exceptions in XML Web Services

 SOAP Headers

 SOAP Extensions

3XML Web Services

http://www.mini.pw.edu.pl/~mossakowKrzysztof Mossakowski

XML Web Services

Overview

4XML Web Services

http://www.mini.pw.edu.pl/~mossakowKrzysztof Mossakowski

Web Services

 A Web service is an application that exposes a
Web-accessible API

 This application can be invoked programmatically over the Web

 The Web services platform is a set of standards that
applications follow to achieve interoperability via the Web

 Any programming language and any platform can be used to
write the Web service, and it is widely accessed according to
the Web services standards

 The benefits of Web services:

 Web services are simple

 Web services are loosely coupled

 Web services are stateless

 Web services are firewall-friendly

5XML Web Services

http://www.mini.pw.edu.pl/~mossakowKrzysztof Mossakowski

XML Web Services Infrastructure

7XML Web Services

http://www.mini.pw.edu.pl/~mossakowKrzysztof Mossakowski

XML Web Services Standards

 WSDL – used to create an interface definition for a web
service

 SOAP – the message format used to encode information
(such as data values) before sending it to a web service

 HTTP – the protocol over which all web service
communication takes place.

 DISCO – used to create discovery documents that provide
links to multiple web service endpoints

 UDDI (Universal Description, Discovery, and Integration) – a
standard for creating business registries that catalogue
companies, the web services they provide, and the
corresponding URLs for their WSDL contracts

8XML Web Services

http://www.mini.pw.edu.pl/~mossakowKrzysztof Mossakowski

Wire Formats

 HTTP-GET and HTTP-POST are standard protocols that use
HTTP verbs for the encoding and passing of parameters as
name/value pairs

 HTTP-GET passes its parameters in the form of url encoded text
appended to the URL of the server handling the request

 In HTTP-POST the name/value pairs are passed inside the
actual HTTP request message

 SOAP is a simple, lightweight XML-based protocol for
exchanging structure and type information on the Web

 The overall design goal of SOAP is to keep it as simple as
possible, and to provide a minimum of functionality

 The protocol defines a messaging framework that contains no
application or transport semantics

10XML Web Services

http://www.mini.pw.edu.pl/~mossakowKrzysztof Mossakowski

SOAP Examples

<soap:Envelope

xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">

<soap:Body>

<getProductDetailsResponse xmlns="http://warehouse.example.com/ws">

<getProductDetailsResult>

<productName>Toptimate 3-Piece Set</productName>

<productID>827635</productID>

<description>3-Piece luggage set.</description>

<price>96.50</price>

<inStock>true</inStock>

</getProductDetailsResult>

</getProductDetailsResponse>

</soap:Body>

</soap:Envelope>

<soap:Envelope

xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">

<soap:Body>

<getProductDetails xmlns="http://warehouse.example.com/ws">

<productID>827635</productID>

</getProductDetails>

</soap:Body>

</soap:Envelope>

11XML Web Services

http://www.mini.pw.edu.pl/~mossakowKrzysztof Mossakowski

XML Web Service Lifetime

12XML Web Services

http://www.mini.pw.edu.pl/~mossakowKrzysztof Mossakowski

Creating XML Web Services

13XML Web Services

http://www.mini.pw.edu.pl/~mossakowKrzysztof Mossakowski

Building an XML Web Service

1. Create an .asmx file and declare a Web service using the
@WebService directive

 This directive specifies the class that implements the Web
service and the programming language that is used in the
implementation

 If the class resides in a separate assembly, it must be placed in
the \Bin directory under the Web application where the Web

service resides

<%@ WebService Language="C#" Class="WebService1" %>

<%@ WebService Language="C#"

Class="MyName.WebService1,MyAssembly" %>

14XML Web Services

http://www.mini.pw.edu.pl/~mossakowKrzysztof Mossakowski

Building an XML Web Service cont.

2. Create a class that implements the Web service

 The class can optionally derive from the WebService class

 Deriving from the WebService class allows to gain access to
the common ASP.NET objects, such as Application,
Session, User, and Context

<%@ WebService Language="C#" Class="WebService1" %>

using System;

using System.Web.Services;

public class WebService1 : WebService

15XML Web Services

http://www.mini.pw.edu.pl/~mossakowKrzysztof Mossakowski

Building an XML Web Service cont.

3. Optionally, apply the WebServiceAttribute attribute to

the class implementing the Web service

 It can be used to set the default XML namespace for the Web
service

 The default namespace, http://tempuri.org, should be

changed before the XML Web service is made publicly
consumable

<%@ WebService Language="C#" Class="WebService1" %>

using System;

using System.Web.Services;

[WebService(Namespace = "http://www.contoso.com/")]

public class WebService1 : WebService

16XML Web Services

http://www.mini.pw.edu.pl/~mossakowKrzysztof Mossakowski

Building an XML Web Service cont.

4. Define the Web service methods that compose the
functionality of the Web service

 Web service method is a method that can be communicated
with over the Web

 All Web service methods must be public and have the
WebMethod attribute applied to them

<%@ WebService Language="C#" Class="WebService1" %>

using System;

using System.Web.Services;

[WebService(Namespace = "http://www.contoso.com/")]

public class WebService1 : WebService {

[WebMethod]

public long Multiply(int a, int b)

{

return a * b;

}

}

17XML Web Services

http://www.mini.pw.edu.pl/~mossakowKrzysztof Mossakowski

WebServiceAttribute Members

 Description – a descriptive message for the Web service

 Displayed to prospective consumers when description
documents are generated

 Name – the name of the Web service

 Used in a WSDL document

 Namespace - used as the default namespace for XML

elements directly pertaining to the XML Web service

18XML Web Services

http://www.mini.pw.edu.pl/~mossakowKrzysztof Mossakowski

WebMethodAttribute Members

 BufferResponse – whether the response for this request is
buffered

 CacheDuration – the number of seconds the response
should be held in the cache

 Description – a descriptive message

 EnableSession – whether session state is enabled for an
XML Web service method

 In order for an XML Web service to maintain session state for a
client, the client must persist the cookie

 MessageName – can be used to alias method or property
names (e.g. to uniquely identify polymorphic methods)

 The default is the name of the XML Web service method

 TransactionOption – indicates the transaction support

19XML Web Services

http://www.mini.pw.edu.pl/~mossakowKrzysztof Mossakowski

Asynchronous XML Web Service Methods

 Asynchronous Web service methods should be used to
improve performance of Web service methods that invoke
long-running methods that block their thread

 Potential reasons for using asynchronous Web methods

 Communicating with other Web services

 Accessing remote databases

 Performing network I/O

 Reading and writing to large files

 Regardless of whether a Web service method is implemented
asynchronously, clients can communicate with it
asynchronously

 The implementation of an asynchronous Web service method
has no impact on the HTTP connection between the client
and the server

24XML Web Services

http://www.mini.pw.edu.pl/~mossakowKrzysztof Mossakowski

Authentication Options

 Windows – Basic: the user name and password are sent in
base 64-encoded strings in plain text

 Windows – Basic over SSL: using Secure Sockets Layer

 Windows – Digest: uses hashing to transmit client credentials
in an encrypted manner (not supported by other platforms)

 Windows – Integrated Windows: uses a cryptographic
exchange with the user's Microsoft Internet Explorer Web
browser

 Windows – Client Certificates: requires each client to obtain a
certificate from a mutually trusted certificate authority

 Forms: not supported by Web services

 SOAP headers – Custom: user credentials are passed within
the SOAP header of the SOAP message

25XML Web Services

http://www.mini.pw.edu.pl/~mossakowKrzysztof Mossakowski

Authentication Using SOAP Headers

 SOAP headers are a great way of passing out-of-band or
information not related to the semantics of a Web service

 The Header element is optional and can thus be processed

by the infrastructure, e.g. to provide custom authentication

 To use SOAP for custom authentication

 A Web service client would send its credentials to the Web
service by adding the expected SOAP header with the client
credentials

 A Web service must do two things:

 Specify that it expects the SOAP header containing the
authentication credentials

 Authorize the client access to the Web service

26XML Web Services

http://www.mini.pw.edu.pl/~mossakowKrzysztof Mossakowski

Publishing and Deployment

XML Web Services

27XML Web Services

http://www.mini.pw.edu.pl/~mossakowKrzysztof Mossakowski

Deploying XML Web Services

 Deploying a Web service involves copying the .asmx file and
any assemblies used by the Web service

 The following items are deployed to a Web server:

 Web application directory – this directory should be flagged as
an IIS Web application

 .asmx file – acts as the base URL for clients

 .disco file – optional, acts as a discovery mechanism for the
Web service

 Web.config file – optional

 \Bin directory – contains the binary files for the Web service

28XML Web Services

http://www.mini.pw.edu.pl/~mossakowKrzysztof Mossakowski

Web Service Discovery

 Web service discovery is the process of locating and
interrogating Web service descriptions, which is a preliminary
step for accessing a Web service

 There are three ways a potential Web service client can
access a discovery document:

 Static discovery file: publish a discovery file, typically with a
.disco file name extension

 ?disco query string: any Web service running on ASP.NET can
have a discovery document dynamically generated for it

 .vsdisco request: dynamic discovery can be turned on to allow
Web service client applications to discover all available Web
services in the folder and subfolders corresponding to a request
URL

29XML Web Services

http://www.mini.pw.edu.pl/~mossakowKrzysztof Mossakowski

Using a .disco File

1. Create and publish a .disco file

2. Optionally, create an HTML page with a link to the discovery
document

 Users can then supply URLs like the following during the
discovery process

<?xml version="1.0"?>

<discovery xmlns="http://schemas.xmlsoap.org/disco/">

<discoveryRef ref="/Folder/Default.disco"/>

<contractRef ref="http://MyWebServer/UserName.asmx?WSDL"

docRef="Service.htm"

xmlns="http://schemas.xmlsoap.org/disco/scl/"/>

<schemaRef ref="Schema.xsd"

xmlns="http://schemas.xmlsoap.org/disco/schema/"/>

</discovery>

<HEAD>

<link type='text/xml' rel='alternate' href='MyWebService.disco'/>

</HEAD>

30XML Web Services

http://www.mini.pw.edu.pl/~mossakowKrzysztof Mossakowski

Enabling Dynamic Discovery

 When dynamic discovery is turned on, all Web services and
discovery documents existing on the Web server beneath the
requested URL are discoverable

<configuration>

<system.web>

<httpHandlers>

<add verb="*" path="*.vsdisco"

type="System.Web.Services.Discovery.DiscoveryRequestHandler,

System.Web.Services, Version=1.0.3300.0,

Culture=neutral,

PublicKeyToken=b03f5f7f11d50a3a"

validate="false"/>

</httpHandlers>

</system.web>

</configuration>

34XML Web Services

http://www.mini.pw.edu.pl/~mossakowKrzysztof Mossakowski

XML Web Services Clients

35XML Web Services

http://www.mini.pw.edu.pl/~mossakowKrzysztof Mossakowski

Web Services Discovery

 When the URL to a discovery document residing on a Web
server is known, a developer of a client application can use a
Web service discovery to:

 Learn that a Web service exists

 Learn what its capabilities are

 Learn how to properly interact with it

 Through the process of Web service discovery, a set of files is
downloaded to the local computer containing details about
the existence of Web services

 Service descriptions, XSD schemas, discovery documents

Disco /out:location /username:user /password:mypwd
/domain:mydomain <url>

36XML Web Services

http://www.mini.pw.edu.pl/~mossakowKrzysztof Mossakowski

Creating an XML Web Service Proxy

 As long as a service description exists, a proxy class can be
generated if the service description conforms to WSDL

 With a service description, a proxy class can be created using
the Wsdl.exe tool

 language: CS, VB, JS, VJS, CPP

 protocol: SOAP, SOAP 1.2, HTTP-GET, HTTP-POST

 namespace: the namespace of the generated proxy

 username and password: used when connecting to a Web
server that requires authentication

Wsdl /language:language /protocol:protocol /namespace:myNameSpace
/out:filename /username:username /password:password
/domain:domain <url or path>

37XML Web Services

http://www.mini.pw.edu.pl/~mossakowKrzysztof Mossakowski

Generated Proxy Class

 A single source file is generated in the specified language

 It contains a proxy class exposing both synchronous and
asynchronous methods for each Web service method of the
Web service

 Each method of the generated proxy class contains the
appropriate code to communicate with the Web service method

 If an error occurs during communication with the Web service
and the proxy class, an exception is thrown

38XML Web Services

http://www.mini.pw.edu.pl/~mossakowKrzysztof Mossakowski

Creating Clients for XML Web Services

1. Create a proxy class for the Web service

2. Reference the proxy class in the client code

3. Create an instance of the proxy class in the client code

4. If anonymous access has been disabled for the Web
application hosting the Web service, set the Credentials

property of the proxy class

5. Call the method on the proxy class that corresponds to the
Web service method with which you want to communicate

39XML Web Services

http://www.mini.pw.edu.pl/~mossakowKrzysztof Mossakowski

Asynchronous Communication

 A Web service does not have to be specifically written to
handle asynchronous requests to be called asynchronously

 There are two design patterns that allow to call a Web service
method asynchronously

 The Begin/End pattern

 Using the callback technique

 Using the wait technique

 The event-driven asynchronous programming pattern (available
in the .NET Framework 2.0)

42XML Web Services

http://www.mini.pw.edu.pl/~mossakowKrzysztof Mossakowski

The Event-Driven Technique
private void callButton_Click(object sender, EventArgs e)

{

BarcodeService.BarcodeSvcSoapClient service = new

BarcodeClient.BarcodeService.BarcodeSvcSoapClient();

service.CreateBarcodeCompleted += new EventHandler

<BarcodeClient.BarcodeService.CreateBarcodeCompletedEventArgs>

(service_CreateBarcodeCompleted);

service.CreateBarcodeAsync(10, 10, 10, 10, "Title", 10, true,

"one", "two", "three", "four", "five", 24, 8, true, "gif");

}

void service_CreateBarcodeCompleted(object sender,

BarcodeClient.BarcodeService.CreateBarcodeCompletedEventArgs e)

{

byte[] buffer = e.Result;

MemoryStream stream = new MemoryStream(buffer);

Bitmap bmp = new Bitmap(stream);

pictureBox.Width = bmp.Width;

pictureBox.Height = bmp.Height;

pictureBox.Image = bmp;

}

43XML Web Services

http://www.mini.pw.edu.pl/~mossakowKrzysztof Mossakowski

Testing Web Methods in a Browser

 Using HTTP-GET

 Using HTTP-POST

http://www.contoso.com/math.asmx/Subtract?num1=10&num2=5

<form method="POST"

action='http://www.contoso.com/math.asmx/Subtract'>

<input type="text" size="5" name='num1'\"> -

<input type="text" size="5" name='num2'\"> =

<input type="submit" value="Subtract">

</form>

44XML Web Services

http://www.mini.pw.edu.pl/~mossakowKrzysztof Mossakowski

Exceptions in XML Web Services

45XML Web Services

http://www.mini.pw.edu.pl/~mossakowKrzysztof Mossakowski

SOAP Faults

 Exceptions thrown by a Web service method created using
ASP.NET are sent back to the client in the form of a SOAP
fault

 A SOAP fault is a Fault XML element within a SOAP

message that specifies when an error occurred

 It may contain details such as the exception string and the
source of the exception

 Fortunately, both clients and Web services created using
ASP.NET do not populate or parse the Fault XML element

directly

 The common design pattern for throwing and catching
exceptions in the .NET Framework can be used

46XML Web Services

http://www.mini.pw.edu.pl/~mossakowKrzysztof Mossakowski

SoapException

 A Web service can throw either a generic SoapException

or an exception specific to the problem

 ASP.NET serializes the exception into a valid SOAP message by
placing the exception into a SOAP Fault element

 When the SOAP message is deserialized by a client, the SOAP
fault is converted to a SoapException exception

 The exception details are placed in the Message property

 When unhandled exception occurs while executing the Web
service method, the exception is caught by ASP.NET and
thrown back to the client

 A .NET Framework client receives a SoapException with the
specific exception placed in the InnerException property

47XML Web Services

http://www.mini.pw.edu.pl/~mossakowKrzysztof Mossakowski

SoapHeaderException

 A SoapHeaderException is thrown when an exception
case was detected while processing a SOAP Header element

 This exception is translated into a Fault element placed inside
the response's Header element

 A .NET Framework client receives the SoapHeaderException

48XML Web Services

http://www.mini.pw.edu.pl/~mossakowKrzysztof Mossakowski

SOAP Headers

49XML Web Services

http://www.mini.pw.edu.pl/~mossakowKrzysztof Mossakowski

Defining SOAP Headers
public class MyHeader : SoapHeader {

public string Login;

public string Password;

}

[WebService(Namespace = "http://www.contoso.com")]

public class MyWebService {

// Add a member variable of the type deriving from SoapHeader.

public MyHeader myHeaderMemberVariable;

// Apply a SoapHeader attribute.

[WebMethod]

[SoapHeader("myHeaderMemberVariable")]

public string MyWebMethod() {

// Process the SoapHeader.

if (myHeaderMemberVariable != null) {

return String.Format("Login: {0}, Password: {1}",

myHeaderMemberVariable.Login,

myHeaderMemberVariable.Password);

} else {

return "-- no MyHeader --";

}

}

}

50XML Web Services

http://www.mini.pw.edu.pl/~mossakowKrzysztof Mossakowski

Building a Client That Processes Headers

class Program

{

static void Main(string[] args)

{

Service.MyHeader myHeader = new Service.MyHeader();

myHeader.Login = "John";

myHeader.Password = "Kovalsky";

Service.MyWebService srv = new Service.MyWebService();

srv.MyHeaderValue = myHeader;

string s = srv.MyWebMethod();

Console.Write(s);

}

}

51XML Web Services

http://www.mini.pw.edu.pl/~mossakowKrzysztof Mossakowski

Changing a SOAP Header's Recipients
public class MyHeader : SoapHeader

{

public string Username;

public string Password;

}

[WebService(Namespace = "http://www.contoso.com")]

public class MyWebService : WebService

{

public MyHeader myOutHeader;

[WebMethod]

[SoapHeader("myOutHeader",

Direction = SoapHeaderDirection.Out)]

public void MyOutHeaderMethod()

{

// Return the client's authenticated name.

myOutHeader.Username = User.Identity.Name;

}

}

52XML Web Services

http://www.mini.pw.edu.pl/~mossakowKrzysztof Mossakowski

Handling Unknown SOAP Headers
public class MyWebService

{

public SoapUnknownHeader[] unknownHeaders;

[WebMethod]

[SoapHeader("unknownHeaders")]

public string MyWebMethod()

{

foreach (SoapUnknownHeader header in unknownHeaders) {

// Check to see if this is a known header.

if (header.Element.Name == "MyKnownHeader") {

header.DidUnderstand = true;

} else {

// For those headers that cannot be

// processed, set DidUnderstand to false.

header.DidUnderstand = false;

}

}

}

}

53XML Web Services

http://www.mini.pw.edu.pl/~mossakowKrzysztof Mossakowski

SOAP Extensions

54XML Web Services

http://www.mini.pw.edu.pl/~mossakowKrzysztof Mossakowski

SOAP Extensions

 SOAP extensions allow developers to augment the
functionality of a Web service

 For instance, an encryption or compression algorithm can be
implemented to run with an existing Web service

 Typically, when a SOAP extension modifies the contents of a
SOAP message, the modifications must be done on both the
client and the server

 For instance, if the SOAP message is not decrypted, then the
ASP.NET infrastructure cannot deserialize the SOAP message
into an object

55XML Web Services

http://www.mini.pw.edu.pl/~mossakowKrzysztof Mossakowski

Extending the SoapExtension Class

 The ChainStream() method is passed a Stream object
and returns a Stream object

 A SOAP extension should read from the Stream passed into
ChainStream() and write to the Stream returned from
ChainStream()

 Therefore, it is important within the ChainStream() method
to assign both Stream references to member variables

 The GetInitializer() and Initialize() methods are

used to initialize internal data, based on the Web service or
Web service method it is applied to

 Actual extended processing beyond the standard SOAP
processing is performed by the ProcessMessage() method

56XML Web Services

http://www.mini.pw.edu.pl/~mossakowKrzysztof Mossakowski

Implementing the SOAP Extension

 There are two ways to run a SOAP extension on either a
client or server application:

 Configuring the application to run the extension (it can be done
for all Web methods or all Web services)

 Creating a custom attribute that is applied to a Web service
method

<configuration>

<system.web>

<webServices>

<soapExtensionTypes>

<add type="Contoso.MySoapExtension, Version=2.0.0.0,

Culture=neutral, PublicKeyToken=31bf3856ad364e35"

priority="1"

group="0"/>

</soapExtensionTypes>

</webServices>

</system.web>

</configuration>

57XML Web Services

http://www.mini.pw.edu.pl/~mossakowKrzysztof Mossakowski

public class TraceExtension : SoapExtension {

Stream oldStream, newStream;

string filename;

public override Stream ChainStream(Stream stream){

oldStream = stream;

newStream = new MemoryStream();

return newStream;

}

// When the SOAP extension is accessed for the first time,

// the XML Web service method it is applied to is accessed to

// store the file name passed in, using the corresponding

// SoapExtensionAttribute.

public override object GetInitializer(LogicalMethodInfo methodInfo,

SoapExtensionAttribute attribute) {

return ((TraceExtensionAttribute) attribute).Filename;

}

// The SOAP extension was configured to run using a

// configuration file instead of an attribute applied to a

// specific Web service method.

public override object GetInitializer(Type WebServiceType) {

return "C:\\" + WebServiceType.FullName + ".log";

}

// ...

58XML Web Services

http://www.mini.pw.edu.pl/~mossakowKrzysztof Mossakowski

// ...

// Receive the file name stored by GetInitializer and store it

// in a member variable for this specific instance.

public override void Initialize(object initializer) {

filename = (string) initializer;

}

// If the SoapMessageStage is such that the SoapRequest or

// SoapResponse is still in the SOAP format to be sent or

// received, save it out to a file.

public override void ProcessMessage(SoapMessage message) {

switch (message.Stage) {

case SoapMessageStage.BeforeSerialize:

break;

case SoapMessageStage.AfterSerialize:

WriteOutput(message); // custom method

break;

case SoapMessageStage.BeforeDeserialize:

WriteInput(message); // custom method

break;

case SoapMessageStage.AfterDeserialize:

break;

default:

throw new Exception("invalid stage");

}

}

//...

59XML Web Services

http://www.mini.pw.edu.pl/~mossakowKrzysztof Mossakowski

// ...

// Create a SoapExtensionAttribute for the SOAP Extension that

// can be applied to a Web service method.

[AttributeUsage(AttributeTargets.Method)]

public class TraceExtensionAttribute : SoapExtensionAttribute {

private string filename = "c:\\log.txt";

private int priority;

public override Type ExtensionType {

get { return typeof(TraceExtension); }

}

public override int Priority {

get { return priority; }

set { priority = value; }

}

public string Filename {

get { return filename; }

set { filename = value;

}

}

}

}

