
Windows Programming

http://www.mini.pw.edu.pl/~mossakow
Krzysztof Mossakowski
Faculty of Mathematics and Information Science

Windows Forms

Lecture 7 - 1

Custom Controls

Windows Programming

http://www.mini.pw.edu.pl/~mossakow
Krzysztof Mossakowski
Faculty of Mathematics and Information Science

Lecture 7 - 2

Windows Forms Custom Controls

 A composite control (user control)

 a collection of Windows Forms controls encapsulated in a
common container

 An extended control (derived control)

 derive an inherited control from any existing Windows Forms
control

 extend its functionality by adding custom properties, methods,
or other features

 override the OnPaint() method to get a custom appearance

 A custom control

 inherited from the Control class

 the most powerful way to create a control

Windows Programming

http://www.mini.pw.edu.pl/~mossakow
Krzysztof Mossakowski
Faculty of Mathematics and Information Science

Lecture 7 - 3

Base Classes for Custom Controls

 Component – can be dragged from the toolbox but it
doesn't get a piece of form real estate (e.g. ToolTip,
Timer, etc.)

 Control – mouse and keyboard support (owner-drawn
controls)

 ScrollableControl – support for scrolling

 ContainerControl – support for containing child controls
and managing their focus (e.g. GroupBox, Panel)

 UserControl – the Load event for initialization, design-
time support (user controls)

 Form and other control classes – deriving from the Form
class to create a reusable form template, or deriving from an
existing control to override and enhance its functionality
(derived controls)

Windows Programming

http://www.mini.pw.edu.pl/~mossakow
Krzysztof Mossakowski
Faculty of Mathematics and Information Science

Lecture 7 - 4

Aspects of Creating Custom Controls

 All standard system behaviour must be mimic manually, e.g.:

 scrolling support

 focus cues (i.e. indicating when the control has focus)

 the "pushed" state appearance for a button control

 special cues or "hot tracking" appearance changes when the
mouse moves over the control

 hit testing to determine if a click was made in an appropriate
area

 respecting and applying the Windows XP or Vista themes

Windows Programming

http://www.mini.pw.edu.pl/~mossakow
Krzysztof Mossakowski
Faculty of Mathematics and Information Science

Lecture 7 - 5

Visual Studio Toolbox Support

 Every time a class library is compiled, Visual Studio scans
through the classes it contains, and adds each component or
control to a special temporary tab at the top of the Toolbox

 The first time a control is added to a project (e.g. by
dragging from the Toolbox), Visual Studio:

 adds a reference to the assembly where the control is defined

 copies this assembly to the project directory

 The Toolbox can be customized

 the Toolbox is a user-specific Visual Studio setting, not a
project-specific setting

Windows Programming

http://www.mini.pw.edu.pl/~mossakow
Krzysztof Mossakowski
Faculty of Mathematics and Information Science

Lecture 7 - 6

Design Time Issues

 Allowing the developer to add the control to a form and
configure it at design time

 Ensuring the developer’s configuration steps are properly
serialized into the form code so the control can be
successfully initialized when the program is executed

 Ensuring the control behaves nicely at runtime, e.g. a
realistic representation of the runtime appearance

 Giving design-time shortcuts for complex configuration tasks
(right-click context menus, smart tags, advanced editors for
specialized properties, and so on)

 Using licensing to differentiate between development and
runtime use of a control, and restricting use according to
your license policy

Windows Programming

http://www.mini.pw.edu.pl/~mossakow
Krzysztof Mossakowski
Faculty of Mathematics and Information Science

Lecture 7 - 7

Sample Custom Control

Windows Programming

http://www.mini.pw.edu.pl/~mossakow
Krzysztof Mossakowski
Faculty of Mathematics and Information Science

Lecture 7 - 8

Design Time Support

 Attributes

 supplying information that will be used in the Properties
window

 attaching other design-time components to the control and
configuring how properties are serialized

 Type converters

 allowing complex or unusual data types to be converted to and
from representations in more common data types

 generating the initialization code required to instantiate a
complex type

 Type editors

 providing a graphical interface for setting complex type values

 Control designers

 managing the control's design-time appearance and behaviour

Windows Programming

http://www.mini.pw.edu.pl/~mossakow
Krzysztof Mossakowski
Faculty of Mathematics and Information Science

Lecture 7 - 9

Design-Time Attributes

 For classes:
 DefaultPropertyAttribute – the property will be

selected after clicking on the control

 DefaultEventAttribute

 For properties:
 DefaultValueAttribute

 EditorAttribute – an editor to use by Visual Designer

 LocalizableAttribute – the property will be stored in
resources when the developer starts localization

 TypeConverterAttributes

 For properties and events (appearance in property browser):
 BrowsableAttribute

 CategoryAttribute

 DescriptionAttribute

Windows Programming

http://www.mini.pw.edu.pl/~mossakow
Krzysztof Mossakowski
Faculty of Mathematics and Information Science

Lecture 7 - 10

Implementing a Type Converter

 Derive from the TypeConverter class

 Override:

 CanConvertFrom(), CanConvertTo() – if the conversion

can be done

 ConvertFrom(), ConvertTo() – to make a conversion

 IsValid() – to validate

 All these methods are implemented in the TypeConverter

class, override them if necessary

Windows Programming

http://www.mini.pw.edu.pl/~mossakow
Krzysztof Mossakowski
Faculty of Mathematics and Information Science

Lecture 7 - 11

Example of Type Converter Implementation
public class PointConverter : TypeConverter {

public override bool CanConvertFrom(
ITypeDescriptorContext context, Type sourceType) {

if (sourceType == typeof(string)) {
return true;

}
return base.CanConvertFrom(context, sourceType);

}

public override object ConvertFrom(
ITypeDescriptorContext context,
CultureInfo culture, object value) {

if (value is string) {
string[] v = ((string)value).Split(new char[] {','});
return new Point(int.Parse(v[0]), int.Parse(v[1]));

}
return base.ConvertFrom(context, culture, value);

}

public override object ConvertTo(
ITypeDescriptorContext context, CultureInfo culture,
object value, Type dstType) {

if (destinationType == typeof(string)) {
return ((Point)value).X + "," + ((Point)value).Y;

}
return base.ConvertTo(context, culture, value, dstType);

}
}

Windows Programming

http://www.mini.pw.edu.pl/~mossakow
Krzysztof Mossakowski
Faculty of Mathematics and Information Science

Lecture 7 - 12

Prebuilt Type Editors

 System.ComponentModel.Design:

 ArrayEditor, BinaryEditor, CollectionEditor,

MultilineStringEditor

 System.Drawing.Design:

 FontEditor, ImageEditor

 System.Web.UI.Design.WebControls:

 RegexTypeEditor

 System.Windows.Forms.Design:

 MaskPropertyEditor, FileNameEditor,

FolderNameEditor, ShortcutKeysEditor

Windows Programming

http://www.mini.pw.edu.pl/~mossakow
Krzysztof Mossakowski
Faculty of Mathematics and Information Science

Lecture 7 - 13

Editing Custom Types

 Possibilities:

 edit as a string - requires a TypeConverter for a custom type

 edit with a drop-down UI - requires a UITypeEditor

 edit with a modal dialog box - requires a UITypeEditor

Windows Programming

http://www.mini.pw.edu.pl/~mossakow
Krzysztof Mossakowski
Faculty of Mathematics and Information Science

Lecture 7 - 14

Implementing a UI Type Editor

 Necessaries:

 define a class derived from UITypeEditor

 override GetEditStyle(),return: None, DropDown or
Modal

 override EditValue(), parameters:

 ITypeDescriptorContext – the context (also the

control which is being edited)

 IServiceProvider – for displaying a form or a drop-

down

 Optional possibilities:

 a constructor to make initialization

 GetPaintValueSupported(), PaintValue() –

displaying value’s representation

Windows Programming

http://www.mini.pw.edu.pl/~mossakow
Krzysztof Mossakowski
Faculty of Mathematics and Information Science

Lecture 7 - 15

Example of UI Type Editor Implementation
public class MyEditor : UITypeEditor {

public override object EditValue(
ITypeDescriptorContext context,
IServiceProvider provider, object value) {

if (context != null && context.Instance != null &&
provider != null) {

IWindowsFormsEditorService edSvc =
(IWindowsFormsEditorService)provider.GetService(

typeof(IWindowsFormsEditorService));
if (edSvc != null) {
MyControl orgCtrl = (MyControl)context.Instance;
MyControl propCtrl = new MyControl();
propCtrl.Width=orgCtrl.Width;
(...)
edSvc.DropDownControl(propCtrl);
return propCtrl.Points;

}
}
return value;

}

public override UITypeEditorEditStyle GetEditStyle(
ITypeDescriptorContext context) {

return UITypeEditorEditStyle.DropDown;
}

}

Windows Programming

http://www.mini.pw.edu.pl/~mossakow
Krzysztof Mossakowski
Faculty of Mathematics and Information Science

Lecture 7 - 16

Code Serialization

 When the control's properties are configured in the
Properties window, Visual Studio needs to be able to create
the corresponding code statements in the
InitializeComponent() method of the containing form

 Basic serialization – Visual Studio inspects the public
read/write properties of a control and generates the
corresponding statements that set them

 The DefaultValueAttribute can be used to limit the

number of serialized properties – only properties with values
diferrent than default values are serialized

Windows Programming

http://www.mini.pw.edu.pl/~mossakow
Krzysztof Mossakowski
Faculty of Mathematics and Information Science

Lecture 7 - 17

Programmatic Code Serialization
 Reset... – sets a property to its default value

 ShouldSerialize... – Visual Studio writes a code to the

form only if a property is changed

 Do not use DefaultValueAttribute if these methods

are used

[(...)] public Image SourceImage { (...) }

public bool ShouldSerializeSourceImage() {
return (image != null);

}

[(...)] public Point[] Points { (...) }

public void ResetPoints() {
points[0].X = 25; points[0].Y = 25;
(...)
Invalidate();

}

Windows Programming

http://www.mini.pw.edu.pl/~mossakow
Krzysztof Mossakowski
Faculty of Mathematics and Information Science

Lecture 7 - 18

Creating Custom Properties

 Apply design-time attributes

 Call Invalidate() when the control must be redrawn

 If the property is a custom (nonstandard) data type, type
converter must be associated with it

[Browsable(true),
Category("Image"),
DefaultValue(null),
Description("Image drawn in the control")]
public Image SourceImage {
get {
return image;

}
set {
image = value;
Invalidate();

}
}

Windows Programming

http://www.mini.pw.edu.pl/~mossakow
Krzysztof Mossakowski
Faculty of Mathematics and Information Science

Lecture 7 - 19

Custom Events
private EventHandler onPointsChanged;

[Browsable(true),
Category("Specific events"),
Description("Notification that points have changed")]
public event EventHandler PointsChanged {

add {
onPointsChanged += value;

}
remove {

onPointsChanged -= value;
}

}

public Point[] Points {
get { return points; }
set {

points = value;
if (onPointsChanged != null) {

onPointsChanged(this, EventArgs.Empty);
}
Invalidate();

}
}

Windows Programming

http://www.mini.pw.edu.pl/~mossakow
Krzysztof Mossakowski
Faculty of Mathematics and Information Science

Lecture 7 - 20

Control Painting
protected override void OnPaint(PaintEventArgs pe) {
Graphics gr = pe.Graphics;
gr.SmoothingMode = SmoothingMode.AntiAlias;
if (DesignMode) {
gr.FillRectangle(Brushes.Pink, pe.ClipRectangle);

}
GraphicsPath path = BuildPath();
if (DesignMode || EditMode) {
gr.DrawRectangle(Pens.Black,0,0,Width-1,Height-1);
gr.DrawPath(Pens.Black, path);
for (int i = 0; i < points.Length; i++) {
gr.FillRectangle(Brushes.Red,

Points[i].X-size,Points[i].Y-size,
2*size+1,2*size+1);

}
}
if (this.image != null) {
TextureBrush tb = new TextureBrush(image);
gr.FillPath(tb,path);
tb.Dispose();

}
base.OnPaint(pe);

}

Windows Programming

http://www.mini.pw.edu.pl/~mossakow
Krzysztof Mossakowski
Faculty of Mathematics and Information Science

Lecture 7 - 21

Using Visual Styles

 The ControlPaint class – rendering common Windows

Forms controls

 Classes designed to draw the related control regardless of
whether visual styles are available:

 ButtonRenderer, CheckBoxRenderer,

GroupBoxRenderer, RadioButtonRenderer

 Classed designed only to use visual styles:

 ComboBoxRenderer, ProgressBarRenderer,

ScrollBarRenderer, TabRenderer,

TextBoxRenderer, TrackBarRenderer

Windows Programming

http://www.mini.pw.edu.pl/~mossakow
Krzysztof Mossakowski
Faculty of Mathematics and Information Science

Lecture 7 - 22

Using a Control Rendering Class

protected override void OnPaint(PaintEventArgs e)
{
base.OnPaint(e);

if (!ComboBoxRenderer.IsSupported) {
ControlPaint.DrawComboButton(e.Graphics,

this.ClientRectangle,
ButtonState.Normal);

} else {
ComboBoxRenderer.DrawDropDownButton(e.Graphics,

this.ClientRectangle,
ComboBoxState.Normal);

}
}

Windows Programming

http://www.mini.pw.edu.pl/~mossakow
Krzysztof Mossakowski
Faculty of Mathematics and Information Science

Lecture 7 - 23

Using a Visual Style Element
private VisualStyleRenderer renderer = null;
private readonly VisualStyleElement element =

VisualStyleElement.StartPanel.LogOffButtons.Normal;

public CustomControl()
{
if (Application.RenderWithVisualStyles &&

VisualStyleRenderer.IsElementDefined(element)) {
renderer = new VisualStyleRenderer(element);

}
}

protected override void OnPaint(PaintEventArgs e)
{
if (renderer != null) {
renderer.DrawBackground(e.Graphics,

this.ClientRectangle);
} else {
this.Text = "Visual styles are disabled.";
TextRenderer.DrawText(e.Graphics, this.Text,

this.Font, new Point(0, 0), this.ForeColor);
}

}

Windows
Presentation
Foundation

WPF

Windows Programming

http://www.mini.pw.edu.pl/~mossakow
Krzysztof Mossakowski
Faculty of Mathematics and Information Science

Principles of WPF

 Build a platform for rich presentation

 Build a programmable platform

 Build a declarative platform

 Integrate UI, documents, and media

 Incorporate the best of the Web, and the best of Windows

 Integrate developers and designers

Windows Programming

http://www.mini.pw.edu.pl/~mossakow
Krzysztof Mossakowski
Faculty of Mathematics and Information Science

WPF History
 2001

 A new team formed by Microsoft to build a unified presentation platform that
could eventually replace User32/GDI32, Visual Basic, DHTML, and Windows
Forms

 2003

 The Avalon project announced at Professional Developer Conference

 2006

 WPF released as a part of the .NET Framework 3.0

 VS 2005 Extensions for .NET 3.0 (CTP)

 2007

 WPF included with Windows Vista

 .NET Framework 3.5

 Expression Blend 1.0

 VS 2008 & VS WPF Designer

 2008

 WPF 3.5 SP1 (included in .NET 3.5 SP1)

Windows Programming

http://www.mini.pw.edu.pl/~mossakow
Krzysztof Mossakowski
Faculty of Mathematics and Information Science

Supported Systems

 WPF is included with:

 Windows Vista

 Windows Server 2008

 It is also available for:

 Windows XP SP2

 Windows Server 2003

Windows Programming

http://www.mini.pw.edu.pl/~mossakow
Krzysztof Mossakowski
Faculty of Mathematics and Information Science

WPF Features
 Graphical Services

 All graphics are Direct3D applications

 More advanced graphical features

 Using Graphics Processing Unit of a graphics card

 Vector-based graphics with lossless scaling

 3D model rendering

 Interoperability

 WPF can be used inside Win32 code or WPF can use Win32 code

 Windows Forms interoperability is possible using the ElementHost
and WindowsFormsHost classes

 Annotations

 WPF only provides the capability for creating, storing and managing
annotations

 Annotations can be applied on a per-object basis, for objects in a
Document or FlowDocument

Windows Programming

http://www.mini.pw.edu.pl/~mossakow
Krzysztof Mossakowski
Faculty of Mathematics and Information Science

WPF Features cont.
 Media Services

 2D graphics with built-in set of brushes, pens, geometries, and
transforms

 3D capabilities as a subset of the full feature Direct3D's set

 Support for most common image formats

 Support for Windows Imaging Component that allows to write
image codecs

 Support for WMF, MPEG and some AVI films

 Support for Windows Media Player codecs

 Animations

 Time-based animations

 Animations can be triggered by other external events, including user
action

 Animation effects can be defined on a per-object basis

 Set of predefined animation effects

Windows Programming

http://www.mini.pw.edu.pl/~mossakow
Krzysztof Mossakowski
Faculty of Mathematics and Information Science

WPF Features cont.
 Data binding

 Three types of data binding:

 One time: the client ignores updates on the server

 One way: the client has read-only access to data

 Two way: the client can read from and write data to the server

 LINQ queries can act as data sources

 User interface

 A set of built-in controls

 A control's template can be overridden to completely change its visual
appearance

 Applications do not have to be bothered with repainting the display

 Documents

 Support for XML Paper Specification documents

 Supports reading and writing paginated documents using Open
Packaging Convention

Windows Programming

http://www.mini.pw.edu.pl/~mossakow
Krzysztof Mossakowski
Faculty of Mathematics and Information Science

WPF Features cont.

 Text

 Support for OpenType, TrueType, and OpenType CFF fonts

 WPF handles texts in Unicode

 Independent of global settings, such as system locale

 Built-in features: spell checking, automatic line spacing,
enhanced international text, language-guided line breaking,
hyphenation, justification, bitmap effects, transforms, and text
effects such as shadows, blur, glow, rotation etc.

 Support for animated text (both animated glyphs and real-time
changes in postion, size, colour, and opacity)

 Accessibility

 Microsoft UI Automation

Windows Programming

http://www.mini.pw.edu.pl/~mossakow
Krzysztof Mossakowski
Faculty of Mathematics and Information Science

Architecture
 PresentationFramework

 End-user presentation features
(including layouts, animations, and
data-binding)

 PresentationCore

 A managed wrapper for MIL

 It implements the core services

 milcore – Media Integration Layer

 It interfaces directly with DirectX

 It is a native component

Windows Programming

http://www.mini.pw.edu.pl/~mossakow
Krzysztof Mossakowski
Faculty of Mathematics and Information Science

Fundamental Classes

Lecture 7 - 33

http://windowsclient.net

http://windowsclient.net/

Windows Programming

http://www.mini.pw.edu.pl/~mossakow
Krzysztof Mossakowski
Faculty of Mathematics and Information Science

System.Threading.DispatcherObject

 Most objects in WPF derive from DispatcherObject

 It provides the basic constructs for dealing with concurrency
and threading

 WPF is based on a messaging system implemented by the
dispatcher

 The WPF dispatcher uses User32 messages for performing
cross thread calls

 All WPF applications start with two threads: one for
managing the UI and another background thread for
handling rendering and repainting

Windows Programming

http://www.mini.pw.edu.pl/~mossakow
Krzysztof Mossakowski
Faculty of Mathematics and Information Science

System.Windows.DependencyObject

 One of the primary architectural philosophies used in
building WPF was a preference for properties over methods
or events

 Properties are declarative and allow to more easily specify
intent instead of action

 WPF provides a richer (than exists in CLR) property system,
derived from the DependencyObject type

 Currently, the set of expressions supported is closed

 WPF properties support change notifications, which
invoke bound behaviours whenever some property of some
element is changed

 Custom behaviors can be used to propagate a property change
notification across a set of WPF objects

Windows Programming

http://www.mini.pw.edu.pl/~mossakow
Krzysztof Mossakowski
Faculty of Mathematics and Information Science

System.Windows.Media.Visual
 The Visual class provides for building a tree of visual

objects, each optionally containing drawing instructions and
metadata about how to render those instructions (clipping,
transformation, etc.)

 It is the point of connection between these two subsystems,
the managed API and the unmanaged milcore

 WPF displays data by traversing the unmanaged data
structures managed by the milcore

 The entire tree of visuals and drawing instructions is cached

 WPF uses a retained rendering system

 Instead of clipping each component, each component is
asked to render from the back to the front of the display

 It allows to have complex, partially transparent shapes

Windows Programming

http://www.mini.pw.edu.pl/~mossakow
Krzysztof Mossakowski
Faculty of Mathematics and Information Science

System.Windows.UIElement
 UIElement defines core subsystems including Layout,

Input, and Events

 Layout is a core concept in WPF

 At the UIElement level, the basic contract for layout is
introduced – a two phase model with Measure and Arrange
passes

 Input originates as a signal on a kernel mode device driver

 It gets routed to the correct process and thread through an
intricate process involving the Windows kernel and User32

 Once the User32 message corresponding to the input is routed
to WPF, it is converted into a WPF raw input message and sent
to the dispatcher

 WPF allows for raw input events to be converted to multiple
actual events

Windows Programming

http://www.mini.pw.edu.pl/~mossakow
Krzysztof Mossakowski
Faculty of Mathematics and Information Science

System.Windows.FrameworkElement
 It introduces a set of policies and customizations on the

subsystems introduced in lower layers of WPF

 The primary policy introduced by FrameworkElement is
around application layout

 It also introduces a set of new subsystems

 The data binding subsystem allows to bind properties to a
piece of data

 WPF has full support for property binding, transformation,
and list binding

 Data templates allow you to declaratively specify how a
piece of data should be visualized

 Styling is really a lightweight form of data binding

 It allows to bind a set of properties from a shared definition
to one or more instances of an element

Windows Programming

http://www.mini.pw.edu.pl/~mossakow
Krzysztof Mossakowski
Faculty of Mathematics and Information Science

System.Windows.Controls.Control

 Control’s most significant feature is templating

 Templating allows a control to describe it’s rendering in a
parameterized, declarative manner

 A common aspect of the data model of controls is the
content model

 E.g., content for a button can either be a simple string, a
complex data object, or an entire element tree

 In the case of a data object, the data template is used to
construct a display

Windows Programming

http://www.mini.pw.edu.pl/~mossakow
Krzysztof Mossakowski
Faculty of Mathematics and Information Science

XAML
 Extensible Application Markup Language (XAML) is a markup

language for declarative application programming

 The developer (or designer) describes the behaviour and
integration of components without the use of procedural
programming

 Using XAML to develop user interfaces allows for separation
of model and view

 However, all elements of WPF may be coded e.g. in C#

 The XAML code can ultimately be compiled into a managed
assembly in the same way all .NET languages are

 XAML is not specific to WPF (or even .NET), however, it has
been introduced as integral part of WPF

Windows Programming

http://www.mini.pw.edu.pl/~mossakow
Krzysztof Mossakowski
Faculty of Mathematics and Information Science

XAML Examples

Lecture 7 - 41

<Application x:Class="WpfApp.App"

xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"

xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"

StartupUri="Window1.xaml">

<Application.Resources>

</Application.Resources>

</Application>

<Window x:Class="WpfApp.Window1"

xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"

xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"

Title="Window1" Height="300" Width="300">

<Grid>

</Grid>

</Window>

Windows Programming

http://www.mini.pw.edu.pl/~mossakow
Krzysztof Mossakowski
Faculty of Mathematics and Information Science

XAML Namespaces
 XML namespaces are declared using attributes

 These attributes can be placed inside any element start tag, but usually
they are declared in the very first tag

 Once a namespace is declared, it can be used anywhere in the document

 There are two basic namespaces:

 http://schemas.microsoft.com/winfx/2006/xaml

 the XAML namespace which includes various XAML utility features

 by default, this namespace is mapped to the prefix x, so it can be
applied by placing the namespace prefix before the element name
(<x:ElementName>)

 http://schemas.microsoft.com/winfx/2006/xaml/presentation

 the core WPF namespace which encompasses all the WPF classes
including all controls

 by default, it is declared without a namespace prefix, so it becomes
the default namespace for the entire document

Lecture 7 - 42

Windows Programming

http://www.mini.pw.edu.pl/~mossakow
Krzysztof Mossakowski
Faculty of Mathematics and Information Science

Application Class

 The Application object is responsible for managing the
lifetime of the application, tracking the visible windows,
dispensing resources, and managing the global state of the
application

 A WPF application
logically starts
executing when
the Run method
is invoked on
an instance of
the Application
object

using System;

using System.Windows;

namespace WpfApplication1 {

static class Program {

[STAThread]

static void Main() {

Application app = new Application();

Window w = new Window();

w.Title = "Hello World";

w.Show();

app.Run();

}

}

}

Windows Programming

http://www.mini.pw.edu.pl/~mossakow
Krzysztof Mossakowski
Faculty of Mathematics and Information Science

Application's Lifetime

1. Application object is constructed

2. Run method is called

3. Application.Startup event is raised

 Using the Startup event is a preferred place for application
initialization (as opposed for the constructor)

4. User code constructs one or more Window objects

5. Application.Shutdown method is called

6. Application.Exit event is raised

7. Run method completes

Windows Programming

http://www.mini.pw.edu.pl/~mossakow
Krzysztof Mossakowski
Faculty of Mathematics and Information Science

Error Handling
 The Application.DispatcherUnhandledException event is raised

when the dispatcher sees an unhandled exception

 The DispatcherUnhandledExceptionEventArgs.Handled flag
indicates if the exception should be ignored and the application should
continue to run

<Application [...]

DispatcherUnhandledException="App_UnhandledException">

</Application>

public partial class App : Application

{

private void App_UnhandledException(object sender,

DispatcherUnhandledExceptionEventArgs e) {

using (StreamWriter errorLog =

new StreamWriter("c:\\error.log", true)) {

errorLog.WriteLine("Error @ " + DateTime.Now.ToString());

errorLog.WriteLine(e.Exception.ToString());

}

e.Handled = true;

}

}

Windows Programming

http://www.mini.pw.edu.pl/~mossakow
Krzysztof Mossakowski
Faculty of Mathematics and Information Science

Application's State

 The application object is available globally using the
Application.Current static property

 The Application.Properties is a dictionary of any custom
data stored at the level of the application

object lastError = Application.Current.Properties["LastError"];

if (lastError != null &&

lastError is DivideByZeroException) {

}

Application.Current.Properties["LastError"] = e.Exception;

