
Windows Programming

http://www.mini.pw.edu.pl/~mossakow
Krzysztof Mossakowski
Faculty of Mathematics and Information Science

Lecture 12 - 1

Memory

 Each process has its own virtual address space

 32-bit Windows - 4 gigabytes, 64-bit - 8 terabytes

 the memory of a process is protected against other processes

 the system uses a page map for mapping virtual address space
into addresses of physical memory

 The paging file

 it is a way for increasing amount of available physical memory

 pages of memory can be moved from a file to memory and
vice versa

 management of memory pages is invisible for processes

Windows Programming

http://www.mini.pw.edu.pl/~mossakow
Krzysztof Mossakowski
Faculty of Mathematics and Information Science

Lecture 12 - 2

Heap and Virtual Memory

 Using virtual memory
 VirtualAlloc(), VirtualFree()

 VirtualLock(), VirtualUnlock()

 VirtualProtect(), VirtualProtectEx()

 Using a private heap – one or more pages of memory in an
address space of a process
 HeapCreate(), HeapDestroy()

 HeapAlloc(), HeapReAlloc(), HeapFree(),

HeapSize(), HeapValidate()

 Compatibility with 16-bit versions of Windows:
 GlobalAlloc(), GlobalLock(), GlobalReAlloc(),

GlobalFree()

 LocalAlloc(), LocalLock(), LocalReAlloc(),

LocalFree()

Windows Programming

http://www.mini.pw.edu.pl/~mossakow
Krzysztof Mossakowski
Faculty of Mathematics and Information Science

Lecture 12 - 3

.NET Garbage Collection

 The system will automatically detect when allocated object is
no longer being used and will free it

 Destructor (the Finalize() method)

 IDisposable.Dispose()

 The GC class

 Collect() – forces the garbage collection

 GetTotalMemory() – number of bytes currently thought to

be allocated

 SuppressFinalize() – the system will not call the

destructor for the specified object

 AddMemoryPressure(), RemoveMemoryPressure()

[2.0]

Windows Programming

http://www.mini.pw.edu.pl/~mossakow
Krzysztof Mossakowski
Faculty of Mathematics and Information Science

64-bit Applications

 WOW64 is the x86 emulator that allows 32-bit Windows-
based applications to run seamlessly on 64-bit Windows

 64-bit Windows does not support running 16-bit Windows-
based applications

 Migrating C/C++ code to 64-bit environment

 use ULONG_PTR type instead of ULONG for addresses

 .NET Framework automatically installs also its 32-bit version
on 64-bit systems

 it allows to run both 32-bit and 64-bit assemblies on 64-bit
systems

 The target platform of the application (both native and
managed) must be specified before compilation

Lecture 12 - 4

Windows Programming

http://www.mini.pw.edu.pl/~mossakow
Krzysztof Mossakowski
Faculty of Mathematics and Information Science

Lecture 12 - 5

Processes and Threads
 The application – can use many processes

 The process – an executable program

 it has all resources necessary to run

 it has a virtual address space

 it has the executable code, data, and objects’ handles

 it starts with one thread (the primary thread)

 it can create many threads

 The thread – a basic unit which can get a slice of the
processor’s time

 each thread has its own management of exceptions, priority
and a set of structures to remember its context

 all threads of the process share the address space and system
resources of the process

Windows Programming

http://www.mini.pw.edu.pl/~mossakow
Krzysztof Mossakowski
Faculty of Mathematics and Information Science

Lecture 12 - 6

Multitasking
 Multitasking in Windows

 preemptive multitasking – each thread receives processor’s
time (about 20 ms)

 ready for computers with more than one processor

 Advantages

 applications can work simultaneously

 parallel tasks of one application can work simultaneously

 Examples of usage:

 calculations done in the background

 parallel executing of many tasks (e.g. server’s clients)

 getting input from many devices

 prioritizing of tasks

 Guideline: use the smallest possible number of thread

Windows Programming

http://www.mini.pw.edu.pl/~mossakow
Krzysztof Mossakowski
Faculty of Mathematics and Information Science

Lecture 12 - 7

Scheduling

 The system controls multitasking by choosing a waiting
thread which will get the next slice of processor’s time

 Priorities

 a class of a thread

 priority of a thread in the class

 Switching context

 context of stopped thread is stored

 the first waiting thread starts

 Thread’s priority can be changed dynamically

 For computers with many processors, it can be specified
which processor will execute the thread

Windows Programming

http://www.mini.pw.edu.pl/~mossakow
Krzysztof Mossakowski
Faculty of Mathematics and Information Science

Lecture 12 - 8

Multithreading
 Creating

 CreateThread(), CreateRemoteThread()

 Features
 the handle - OpenThread(), GetCurrentThread()

 the identifier - GetCurrentThreadId()

 Sleeping
 SuspendThread(), ResumeThread(), Sleep(),

SleepEx()

 Thread Local Storage

 independent data

 Ending

 return from thread’s function

 ExitThread(), ExitProcess()

 TerminateThread(), TerminateProcess()

Windows Programming

http://www.mini.pw.edu.pl/~mossakow
Krzysztof Mossakowski
Faculty of Mathematics and Information Science

Lecture 12 - 9

Using Threads in .NET

 Creating

1. Create the Thread object (pass ThreadStart or
ParametrizedThreadStart delegate as a parameter)

2. Call the Start() method (will return immediately, check the
IsAlive or ThreadState properties to determine the state

of a thread)

 Pausing and resuming

 the Sleep() method (pass a number of milliseconds or the
Timeout.Infinite value)

 the Interrupt() method (if a target thread is blocked,
ThreadInterruptedException will be thrown in it)

 the Suspend() and Resume() methods are obsolete

Windows Programming

http://www.mini.pw.edu.pl/~mossakow
Krzysztof Mossakowski
Faculty of Mathematics and Information Science

Lecture 12 - 10

Using Threads in .NET cont.

 Destroying

 the Abort() method – the target thread will be stopped

permanently

 ThreadAbortException is thrown in the target thread

 if the target thread calls ResetAbort() method, aborting

is cancelled

 call the Join() method to wait until the thread has ended

 Priorities

 the Priority property (the default value:
ThreadPriority.Normal)

Windows Programming

http://www.mini.pw.edu.pl/~mossakow
Krzysztof Mossakowski
Faculty of Mathematics and Information Science

Lecture 12 - 11

Child Processes
 Creating

 CreateProcess()

 Features

 the handle - OpenProcess(), GetCurrentProcess()

 the identifier - GetCurrentProcessId()

 Inheritance

 handles opened by CreateFile() and other functions for

creating processes, threads and synchronization objects

 environment variables

 the working directory

 Ending

 ExitProcess(), TerminateProcess()

 GetExitCodeProcess()

Windows Programming

http://www.mini.pw.edu.pl/~mossakow
Krzysztof Mossakowski
Faculty of Mathematics and Information Science

Lecture 12 - 12

Using Processes in .NET
 The Process class

 methods:

 GetCurrentProcess(), GetProcessById()

 GetProcesses(), GetProcessesByName()

 Start()

 Close(), CloseMainWindow()

 Kill()

 events: Disposed(), Exited()

 properties:

 StartInfo (Arguments, FileName, UserName,

Password, WorkingDirectory)

 ExitCode

 Id, ProcessName

 MainWindowHandle, PriorityClass

Windows Programming

http://www.mini.pw.edu.pl/~mossakow
Krzysztof Mossakowski
Faculty of Mathematics and Information Science

Lecture 12 - 13

Synchronization

 The problem of parallel access to the same data

 Synchronization

 synchronization objects can be used in one of waiting functions

 the state of synchronization object can be signaled or
nonsignaled

 waiting functions stop the thread until synchronization object is
signaled

Windows Programming

http://www.mini.pw.edu.pl/~mossakow
Krzysztof Mossakowski
Faculty of Mathematics and Information Science

Lecture 12 - 14

Waiting Functions

 For one synchronization object

 waiting for signaled state of the object or timeout

 SignalObjectAndWait()

 WaitForSingleObject(), WaitForSingleObjectEx()

 For many synchronization objects

 either waiting for the signaled state of all objects or only one

 timeout value can be specified

 WaitForMultipleObjects(),

WaitForMultipleObjectsEx()

 MsgWaitForMultipleObjects(),

MsgWaitForMultipleObjectsEx()

Windows Programming

http://www.mini.pw.edu.pl/~mossakow
Krzysztof Mossakowski
Faculty of Mathematics and Information Science

Lecture 12 - 15

Synchronization Objects

 Objects dedicated for synchronization:

 event – a notification about an event

 mutex – a mutual exclusion

 critical section – like a mutex, but only for threads of one
process

 semaphore – maximum allowed number of threads

 waitable timer – signaled after the specified time

 Other objects which can be used for synchronization

 change notification – change in a directory

 console input – something in an input buffer

 job – the end of all processes from a group

 memory resource notification – change in a memory

 process – the end of executing a process

 thread – the end of executing a thread

Windows Programming

http://www.mini.pw.edu.pl/~mossakow
Krzysztof Mossakowski
Faculty of Mathematics and Information Science

Lecture 12 - 16

Synchronization in .NET
 Locking

 the lock keyword in C#

 the Monitor class

 the Mutex class (local or global – visible throughout the operating
system)

 the ReaderWriterLock class (an exclusive access for writers,
shared for readers)

 the Semaphore class (used to control access to a pool of resources;
can be local or global)

 Signaling

 the Join() method of a thread

 classes derived from the WaitHandle class

 classes: EventWaitHandle, AutoResetEvent,
ManualResetEvent

 Interlocked methods: Increment(), Decrement(),
Exchange(), CompareExchange()

Windows Programming

http://www.mini.pw.edu.pl/~mossakow
Krzysztof Mossakowski
Faculty of Mathematics and Information Science

Lecture 12 - 17

Multithreading in User Interface

 All threads can create windows

 EnumThreadWindows()

 GetWindowThreadProcessId()

 There must be a message loop in each thread creating a
window

 PostThreadMessage()

 SendNotifyMessage()

 SendMessageTimeout()

 SendMessageCallback()

 The default: there is no synchronization in getting input data

 AttachThreadInput()

Windows Programming

http://www.mini.pw.edu.pl/~mossakow
Krzysztof Mossakowski
Faculty of Mathematics and Information Science

Lecture 12 - 18

GUI Multithreading in Windows Forms

 Only the main thread can call methods and modify
properties of user interface elements

 Thread-safe calls

 use the BackgroundWorker component

void Test() {
Thread thread = new Thread(new

ThreadStart(MyThreadProc));
thread.Start();

}

void MyThreadProc() {
//textBox1.Text = "something"; //WRONG
SetTextCallback d = new SetTextCallback(SetText);
Invoke(d, new object[] {"something"});

}

Windows Programming

http://www.mini.pw.edu.pl/~mossakow
Krzysztof Mossakowski
Faculty of Mathematics and Information Science

Lecture 12 - 19

GUI Multithreading in WPF

 WPF applications start with two threads: one for handling
rendering and another for managing the UI

 the rendering thread effectively runs hidden in the background
while the UI thread receives input, handles events, and runs
application code

 most applications use a single UI thread

 It is acceptable for one Thread/Dispatcher combination to
manage multiple windows, but sometimes several threads do
a better job

 this is especially true if there is any chance that one of the
windows will monopolize the thread

Windows Programming

http://www.mini.pw.edu.pl/~mossakow
Krzysztof Mossakowski
Faculty of Mathematics and Information Science

GUI Multithreading in WPF cont.
 In general, objects in WPF can only be accessed from the

thread that created them

 it is not generally possible to create an object on one thread,
and access it from another (InvalidOperationException)

 frozen objects become read-only can be used on any thread at
any time

 The UI thread queues work items inside a Dispatcher

 the Dispatcher selects work items on a priority basis and runs
each one to completion

 every UI thread must have at least one Dispatcher, and each
Dispatcher can execute work items in exactly one thread

 most classes in WPF derive from DispatcherObject which
stores a reference to the Dispatcher linked to the currently
running thread

Lecture 12 - 20

Windows Programming

http://www.mini.pw.edu.pl/~mossakow
Krzysztof Mossakowski
Faculty of Mathematics and Information Science

GUI Multithreading in WPF cont.

 The Dispatcher class provides some useful methods:

 CheckAccess – checks if the calling thread has access to the
object

 VerifyAccess – as above, but throws
InvalidOperationException in case of no access

 Invoke – schedules a delegate for execution; it doesn’t return
until the UI thread actually finishes executing the delegate

 BeginInvoke – as above, but is asynchronous (i.e. it returns
immediately)

Lecture 12 - 21

Windows Programming

http://www.mini.pw.edu.pl/~mossakow
Krzysztof Mossakowski
Faculty of Mathematics and Information Science

Lecture 12 - 22

Interprocess Communication

 Win32 API:

 clipboard

 COM - Component Object Model

 Data Copy - WM_COPYDATA

 DDE - Dynamic Data Exchange

 File Mapping,
Name Shared Memory

 Mailslots – unidirectional
communication

 Pipes – bidirectional
communication

 RPC - Remote Procedure Call

 Windows Sockets

 .NET Framework:

 .NET Remoting

 WCF - Windows
Communication
Foundation [3.0+]

Windows Programming

http://www.mini.pw.edu.pl/~mossakow
Krzysztof Mossakowski
Faculty of Mathematics and Information Science

Lecture 12 - 23

Directories

 Operations

 GetCurrentDirectory(), SetCurrentDirectory() –

for a process

 CreateDirectory(), CreateDirectoryEx()

 RemoveDirectory()

 MoveFileEx(), MoveFileWithProgress()

 Files enumeration

 FindFirstFile(), FindNextFile(), FindClose()

 Change notification

 FindFirstChangeNotification(),

FindNextChangeNotification(),

FindCloseChangeNotification()

Windows Programming

http://www.mini.pw.edu.pl/~mossakow
Krzysztof Mossakowski
Faculty of Mathematics and Information Science

Lecture 12 - 24

Operations on Files

 Operations

 CreateFile() – to open a file (including optional creation)

 CloseHandle()

 DeleteFile()

 GetShortPathName(), GetFullPathName()

 GetTempFileName(), GetTempPath()

 CopyFile(), CopyFileEx(), ReplaceFile()

 MoveFile(), MoveFileEx(),

MoveFileWithProgress()

 LockFile(), LockFileEx(), UnlockFile(),

UnlockFileEx()

Windows Programming

http://www.mini.pw.edu.pl/~mossakow
Krzysztof Mossakowski
Faculty of Mathematics and Information Science

Lecture 12 - 25

Reading and Writing Files

 Reading

 ReadFile(), ReadFileEx()

 Writing

 WriteFile(), WriteFileEx()

 Setting the current position in a file

 SetFilePointer()

 SetEndOfFile()

 Flushing file’s buffers

 FlushFileBuffers()

Windows Programming

http://www.mini.pw.edu.pl/~mossakow
Krzysztof Mossakowski
Faculty of Mathematics and Information Science

Lecture 12 - 26

Files Properties
 Security

 SetSecurityInfo(), SetNamedSecurityInfo()

 Attributes

 GetFileAttributes(), SetFileAttributes()

 Size

 GetFileSize()

 Time

 GetFileTime(), SetFileTime()

Windows Programming

http://www.mini.pw.edu.pl/~mossakow
Krzysztof Mossakowski
Faculty of Mathematics and Information Science

Lecture 12 - 27

Files Encryption and Compression

 Encryption (NTFS only)

 EncryptFile()

 DecryptFile()

 FileEncryptionStatus()

 Compression

 LZinit()

 LZOpenFile(), LZClose()

 LZCopy()

 LZRead(), LZSeek()

Windows Programming

http://www.mini.pw.edu.pl/~mossakow
Krzysztof Mossakowski
Faculty of Mathematics and Information Science

Lecture 12 - 28

System.IO namespace in .NET

 Operations and information
 FileInfo (static methods), File (instance methods)

 DirectoryInfo, Directory

 DriveInfo [2.0]

 FileSystemWatcher

 Streams
 Stream, BufferedStream, FileStream,

MemoryStream, UnmanagedMemoryStream

 Readers and writers
 StreamReader, StreamWriter, BinaryReader,

BinaryWriter, StringReader, StringWriter,

TextReader, TextWriter

 Useful tools
 Path

Windows Programming

http://www.mini.pw.edu.pl/~mossakow
Krzysztof Mossakowski
Faculty of Mathematics and Information Science

Lecture 12 - 29

Directory Listing
public static void Main(String[] args) {

string path = ".";
if (args.Length > 0) {

if (File.Exists(args[0])) {
path = args[0];

} else {
Console.WriteLine("{0} not found; using"+

"current directory:", args[0]);
}

DirectoryInfo dir = new DirectoryInfo(path);
foreach (FileInfo f in dir.GetFiles("*.exe")) {

String name = f. Name;
long size = f.Length;
DateTime creationTime = f.CreationTime;
Console.WriteLine("{0,-12:N0} {1,-20:g} {2}",

size, creationTime, name);
}

}
}

Windows Programming

http://www.mini.pw.edu.pl/~mossakow
Krzysztof Mossakowski
Faculty of Mathematics and Information Science

Lecture 12 - 30

Reading and Writing Binary Data
private const string FILE_NAME = "Test.bin";
public static void Main(String[] args) {
if (File.Exists(FILE_NAME)) {
Console.WriteLine("{0} exists!", FILE_NAME);
return;

}
FileStream fs = new FileStream(FILE_NAME,
FileMode.CreateNew);

BinaryWriter w = new BinaryWriter(fs);
for (int i = 0; i < 11; i++) {
w.Write(i);

}
w.Close();
fs.Close();

fs = new FileStream(FILE_NAME, FileMode.Open,
FileAccess.Read);

BinaryReader r = new BinaryReader(fs);
for (int i = 0; i < 11; i++) {
Console.WriteLine(r.ReadInt32());

}
r.Close();
fs.Close();

}

Windows Programming

http://www.mini.pw.edu.pl/~mossakow
Krzysztof Mossakowski
Faculty of Mathematics and Information Science

Lecture 12 - 31

Reading and Writing Text
private const string FILE_NAME = "Test.txt";
public static void Main(String[] args) {
if (File.Exists(FILE_NAME)) {
Console.WriteLine("{0} exists!", FILE_NAME);
return;

}

using (StreamWriter sw = File.CreateText(FILE_NAME)) {
sw.WriteLine("This is my file.");
sw.WriteLine("Integer {0} double {1}", 1, 4.2);
sw.Close();

}

using (StreamReader sr = File.OpenText(FILE_NAME)) {
String input;
while ((input = sr.ReadLine())!=null) {
Console.WriteLine(input);

}
Console.WriteLine ("The end of the stream.");
sr.Close();

}
}

Windows Programming

http://www.mini.pw.edu.pl/~mossakow
Krzysztof Mossakowski
Faculty of Mathematics and Information Science

Lecture 12 - 32

Append Text

private const string FILE_NAME = "Test.txt";
public static void Main(String[] args) {
using (StreamWriter sw = File.AppendText(FILE_NAME)) {
sw.Write("\r\nLog Entry : ");
sw.WriteLine("{0} {1}",

DateTime.Now.ToLongTimeString(),
DateTime.Now.ToLongDateString());

sw.WriteLine(" :");
sw.WriteLine(" :{0}", logMessage);
sw.WriteLine("-------------------------------");

sw.Flush();
sw.Close();

}
}

Windows Programming

http://www.mini.pw.edu.pl/~mossakow
Krzysztof Mossakowski
Faculty of Mathematics and Information Science

Lecture 12 - 33

Using StringReader and StringWriter

public static void Main(String[] args) {
StringBuilder sb = new StringBuilder(

"Some number of characters");
char[] b = {' ','t','o',' ','w','r','i','t','e',
' ','t','o','.'};

StringWriter sw = new StringWriter(sb);
sw.Write(b, 0, 3);
Console.WriteLine(sb);
sw.Close();

String str = "Some number of characters";
char[] b = new char[24];
StringReader sr = new StringReader(str);
sr.Read(b, 0, 13);
Console.WriteLine(b);
sr.Close();

}

Windows Programming

http://www.mini.pw.edu.pl/~mossakow
Krzysztof Mossakowski
Faculty of Mathematics and Information Science

Lecture 12 - 34

Isolated Storage

 The data isolated per user and per assembly

 credentials determine the assembly identity

 An application saves the data to a unique data compartment

 the data compartment consists of one or more isolated storage files
which contain the actual directory locations where the data is stored

 a location is transparent for the developer – usually on the client,
sometimes on the server

 default for Windows XP: <SYSTEMDRIVE>\Documents and Settings

\<user>\Application Data
\<user>\Local Settings\Application Data

 Possibilities for administrators:

 set the trust level

 limit the size

 remove all user’s persisted data

Windows Programming

http://www.mini.pw.edu.pl/~mossakow
Krzysztof Mossakowski
Faculty of Mathematics and Information Science

Lecture 11 - 35

Screen Saver in Win32 API
 An executable file (.exe or .scr) with strictly specified

elements:

 linked library: scrnsave.lib (ANSI) or scrnsavw.lib (Unicode)

 ScreenSaverProc() – a function exported from the module

- it processes all messages
- all unhandled messages should be passed to the
DefScreenSaverProc() function

 ScreenSaverConfigureDialog() – a function exported

from the module
- it displays a dialog box with the screen saver’s configuration

 RegisterDialogClasses()

- it registers custom windows classes or returns true

 an icon with number ID_APP (from Scrnsave.h)

 a description string with number 1

Windows Programming

http://www.mini.pw.edu.pl/~mossakow
Krzysztof Mossakowski
Faculty of Mathematics and Information Science

Screen Saver in .NET

 Just an executable file with .scr extension placed in the
\Windows\system32 directory which handles the following
command line arguments:

 /c – show the Settings dialog box, modal to the foreground
window

 /p <HWND> – preview the screen saver as a child of a window
with the <HWND> handle

 /a <HWND> – change password, modal to window <HWND>

 /s – run the screen saver

 no parameter – show the Settings dialog box

Lecture 12 - 36

