Plane curves

- **9.1** Find tangent and normal line to the curve $(x^2 + y^2)x ay^2 = 0$, $a \neq 0$, at point $P\left(\frac{a}{2}, \frac{a}{2}\right)$.
- **9.2** Line y = 3x 5 is tangent to the parabola $y = x^2 + bx + c$ at point x = 2. Find b and c.
- **9.3** Find the equation of tangent line to the curve $x = t^2 1$, $y = t^3 + 1$ parallel to the line 2x y + 3 = 0
- **9.4** Show that the angle between tangent line to the curve $y = x^5 + 2x^3 + x + 1$ and x axis is in the interval $\left\langle \frac{\pi}{4}; \frac{\pi}{2} \right\rangle$
- **9.5** Show that the distance between the normal line to $x = a(\cos t + t \sin t)$, $y = a(\sin t t \cos t)$ and origin is equal for every normal line.
- **9.6** Find the degree of tangency at the origin:
 - $\bullet \quad y_1 = x^3, \quad y_2 = x \sin x$
 - $y_1 = \sin x$, $y_2 = x^4 \frac{1}{6}x^3 + x$
- **9.7** Find point P and parameters a and b such that curve y = ax + b and $y = x^3 3x^2 + 2$ are tangent at P and the degree is equal to 2.
- **9.8** Find curve tangent to the $y = \sin x$ at P(0,0) from family of curves $y = ax^3 + bx^2 + cx + d$. with the highest degree of tangency. What is the degree of tangency?
- **9.9** Find a, b and c such that the parabola $y = ax^2 + bx + c$ was tangent to the curve $y = x^3$ at point P(1,1) with highest degree.
- **9.10** Find the radius and center of curvature of the curve $y = x^4 + x^2 \frac{1}{2}$ at point $P(0, -\frac{1}{2})$.
- **9.11** Fint the highest curvature of the curve $y = \ln x$