Problems leading to differential equations

3.1 Find the equation of the family of curves that satisfy the property described:
a) The area of the region bounded by the x axis, the tangent line drawn at the point $P(x, y)$ of the curve of the family and the projection of the tangent line on the x -axis has a constant value A .
b) the slope of the tangent at each point of a curve is equal to the difference between y and x coordinate. Find the particular curve through the orygin.
c) The segment of a normal line between the curve and the y axis is bisected by x axis. Find the particular curve through the point $(4,2)$.
d) The normal and the line drawn to the origin from the point of contact of the normal and the curve form an isosceles triangle with the x axis.
e) The tangent and the line drawn to the origin from the point of tangency form an isosceles triangle with the x axis.
3.2 Find the orthogonal trajectories of each of the following family of curves
a) $x^{2}+y^{2}-2 C x=0$
b) $y^{2}=2(x-C)$
c) $(y-2)^{2}=2 C x$
d) $y=C x^{2}$
e) $x^{2}+2 y^{2}=C$
f) $x y=C$

