Space curves

- **9.1** Find the tangent plane to the curve $\overrightarrow{r} = [a \cos t, b \sin t, e^t]$.
- **9.2** Find the tangent plane to the curve $\overrightarrow{r} = [t, t^2, t^3]$ which pass through point $M\left(2, -\frac{1}{3}, -6\right)$.

9.3 In which points of the curve $\overrightarrow{r} = \left[\frac{a}{2}(1 + \cos u), \frac{a}{2}\sin u, a\sin(\frac{u}{2})\right]$ tagnent plane is parallel to y-axis?

9.4 Find equations of normal and binormal lines of the curve $x = y^2$, $x^2 = z$ at point P(1, 1, 1)

9.5 Find points of the curve

$$\begin{cases} x = \frac{2}{t} \\ y = \ln t \\ x = -t^2 \end{cases}$$

in which binormal line is parallel to the plane x - y + 8z + 2 = 0

- **9.6** Find curvature and torsion of the curves:
 - **a)** $\overrightarrow{r} = \left[u, \frac{1}{2}u^2, \frac{1}{3}u^3\right]$ dla u = 1
 - **b)** $\overrightarrow{r} = \left[e^t, e^{-t}, t\sqrt{2}\right]$
 - c) $\overrightarrow{r} = [2t, \ln t, t^2]$