Space curves

9.1 Find the tangent plane to the curve $\vec{r}=\left[a \cos t, b \sin t, e^{t}\right]$.
9.2 Find the tangent plane to the curve $\vec{r}=\left[t, t^{2}, t^{3}\right]$ which pass through point $M\left(2,-\frac{1}{3},-6\right)$.
9.3 In which points of the curve $\vec{r}=\left[\frac{a}{2}(1+\cos u), \frac{a}{2} \sin u, a \sin \left(\frac{u}{2}\right)\right]$ tagnent plane is parallel to y-axis?
9.4 Find equations of normal and binormal lines of the curve $x=y^{2}, \quad x^{2}=z$ at point $P(1,1,1)$
9.5 Find points of the curve

$$
\left\{\begin{array}{l}
x=\frac{2}{t} \\
y=\ln t \\
x=-t^{2}
\end{array}\right.
$$

in which binormal line is parallel to the plane $x-y+8 z+2=0$
9.6 Find curvature and torsion of the curves:
a) $\vec{r}=\left[u, \frac{1}{2} u^{2}, \frac{1}{3} u^{3}\right]$ dla $u=1$
b) $\vec{r}=\left[e^{t}, e^{-t}, t \sqrt{2}\right]$
c) $\vec{r}=\left[2 t, \ln t, t^{2}\right]$

