A\&C 2: Hierarchy of languages.

Theory.

T2.1 Chomsky's hierarchy of languages.
T2.2 Correspondence between automata and languages.
T2.3 Diagonal language, universal language.
T2.4 Halting Problem, undecidability.

Exercises.

E2.1 Let L_{1}, L_{2} be recursive languages. Prove that:
a) $L_{1} \cup L_{2}$ is recursive,
b) $L_{1} \cap L_{2}$ is recursive,
c) $L_{1} \backslash L_{2}$ is recursive,
d) L_{1}^{*} is recursive (by L_{1}^{*} we mean the set of all sequences obtained by concatenating words of $\left.L_{1}\right)$.
What happens if L_{1}, L_{2} are recursively enumerable, but not recursive? What if one of them if recursive, and the other is recursively enumerable, but not recursive?
E2.2 Let $\mathcal{L}=\left\{L_{1}, \ldots, L_{k}\right\}$ be the set of languages over $\{0,1$,$\} , such that:$
a) for each $i \leq k$, the language L_{i} is recursively enumerable,
b) for all i, j, such that $i \neq j$ it holds that $L_{i} \cap L_{j}=\emptyset$,
c) $\bigcup_{i=1}^{k} L_{i}=\{0,1\}^{*}$.

Show that for each $i \leq k$, the language L_{i} is recursive.
E2.3 * Show that the statement from the previous exercise holds, even if \mathcal{L} is infinite (but countable).
E2.4 Show that Halting Problem is undecidable.
E2.5 Consider the following computational problem, called All-Blue Turing Machine. The input is a Turing machine M and a word w. Each state of M is either red of blue, and the initial state s_{0} is blue. The computational question is whether M ever reaches a red state for input w.
Show that All-Blue Turing Machine is undecidable.

