Theory.

- T5.1 Non-deterministic Turing machine,
- T5.2 Languages accepted by NDTMs,
- T5.3 oracle machines,
- T5.4 oracle equivalence.

Exercises.

- E5.1 What are the complements of languages accepted by NDTMs?
- E5.2 How to simulate a NDTM on a DTM?
- E5.3 Construct a NDTM, accepting the following language L_h (assume some reasonable encoding of numbers): L_h consists of sequences S of integers, for which there exists $S' \subseteq S$, such that $\sum_{s \in S'} = \sum_{s \in S \setminus S'}$.

In the following we assume that we have some reasonable encoding of a graph.

- E5.4 Construct a NDTM, accepting the following language L_c : L_c consists of pairs (G, k), such that G contains a clique of at least k vertices.
- E5.5 Construct a NDTM, accepting the following language L_p : L_p consists of pairs (G, k), such that G contains a simple path with at least k vertices.
- E5.6 Construct a NDTM, which computes the longest path in an input graph G.

By RE we denote the set recursively enumerable languages and by REC we denote the set of recursive languages. For a language A, by REC^A we denote the set of languages accepted by oracle machines with oracle A and stop property. For a set S of languages, by \overline{S} we denote the set of complements of languages in S.

- E5.7 Show that for every A it holds that $REC^A = \overline{REC^A}$.
- E5.8 Show that for every A it holds that $RE^A \cap \overline{RE^A} = REC^A$.
- E5.9 Let A be recursive. What is RE^A and REC^A ?
- E5.10 Construct an oracle machine with worst-case time complexity polynomial, with an oracle L_c , accepting the following language L_i : L_i consists of pairs (G, k), such that G contains an independent set of at least k vertices.
- E5.11 Construct an oracle machine with stop property, accepting the diagonal language, using the universal language as an oracle.
- E5.12 Construct an oracle machine solving the halting problem, using the universal language as an oracle.