
Parallel Programming
Programowanie równoległe

Lecture 1: Introduction. Basic notions of parallel processing

Paweł Rzążewski



Grading

I laboratories (4 tasks, each for 3-4 weeks) – total 50 points,
I final test (the last class) – max. 50 points,
I your final grade is given by the sum of these,
I each part has to be passed (≥ 50%)



Schedule of lectures

no date topic
1 23.02 basic notions of parallel processing

02.03 the lecture is cancelled
2 09.03 classical problems in synchronization,

semaphores
3 16.03 semaphores, continued
4 23.03 monitors

30.03 spring holidays
5 06.04 parallell computational models,

parallel algorithms
6 13.04 parallel algorithms, continued
7 20.04 models of distributed computation,

distributed algorithms
8 27.04 final test



Schedule of labs

week task
26.02 task 1 is given
19.03 task 1 deadline

task 2 is given
09.04 task 2 deadline

task 3 is given
07.05 task 3 deadline

task 4 is given
04.06 task 4 deadline
11.06 the last deadline for anything

The remaining classes are consultations.



A little more about the labs

task no max. grade topic
1 10 semaphores
2 10 monitors
3 15 parallel algorithms
4 15 distributed algorithms

Late submission: -5 pts for each (started) week.

The submission consists of two parts:
I submitting the files before the deadline (7 AM),
I coming to the class and presenting the solution.

Submitting files and not presenting them is equivalent to not
submitting at all. It is not necessary to submit all tasks in order to
pass.



What is this course about?

I introduction to basic notions of parallelism,
I typical problems in parallel programs,
I classical solutions to these problems,
I ways to describe and compare parallel algorithms,
I basic parallel algorithms: numerical, graph algorithms,
I typical problems and solutions in distributed processing,
I basic distributed algorithms



What is this course not about?

I specific technologies and technology-specific techniques,
I programming in any specific language,
I synchronization methods offered by modern high-level

languages

Do not expect to be experts in parallel programming and parallel
algorithms design after finishing this short and basic course!



What is this course not about?

I specific technologies and technology-specific techniques,
I programming in any specific language,
I synchronization methods offered by modern high-level

languages

Do not expect to be experts in parallel programming and parallel
algorithms design after finishing this short and basic course!



What should you know already?

I programming in C/C++/C#/Java,
I basics of operating systems,
I knowledge about processes, threads etc.,
I basics of inter-process synchronization (semaphores),
I how to design, describe and analyze (sequential) algorithms,
I basic numerical algorithms,
I basic notions in graph theory



Literature

Barney, B.:
Introduction to Parallel Computing
computing.llnl.gov/tutorials/parallel_comp/

Cormen, T., Leiserson, C.E., Rivest, R.L., Stein, C.:
Introduction to Algorithms, 3rd ed.,
MIT Press 2009
Lynch, N.:
Distributed Algorithms,
Morgan Kaufmann Publishers 1996

Grama, A., Gupta, A., Karypis, G., Kumar, V.:
Introduction to Parallel Computing, 2nd ed.,
Addison Weasley 2003

computing.llnl.gov/tutorials/parallel_comp/


Why parallel processing?

The general idea is to break down the problem into a number of
independent pieces, perform the computation concurrently (as
separate processes, threads etc.) and then combine the results (see
the similarity to divide & conquer paradigm?).



Why parallel processing?

It is a lot easier to harness 100 horses than to grow one that’s 100
times bigger. M. Dertouzos

I we are approaching the limits of current technology
I computers are cheap, but supercomputers are very expensive

Parallelism does not substitute modern technologies, but
accelerates them.



Why parallel processing?

It is a lot easier to harness 100 horses than to grow one that’s 100
times bigger. M. Dertouzos

I we are approaching the limits of current technology
I computers are cheap, but supercomputers are very expensive

Parallelism does not substitute modern technologies, but
accelerates them.



Pros and cons of parallel processing

+ we can get the results now, without waiting for better
technology,

+ in general it’s cheaper to buy several „small” computing units
than one supercomputer,

+ you can distribute the computation

– parallel programs are difficult to design and analyze
(non-determinism),

– debugging is hard,
– parallel programming yields many problems and difficulties
(deadlock, starvation), which do not appear in sequential
programming



Flynn’s taxonomy (1966)

Classification of computer architectures. Many modern
architectures are hybrid, but this model is still widely used.

Single Instruction Single Data StreamMulti Multi



Flynn’s taxonomy (1966)

SISD (Single Instruction, Single Data) – typical sequential machine
(older PCs, servers etc.)

SIMD (Single Instruction, Multi Data) – the same instructions are
performed on different data, often used for numerical
algorithms like matrix processing (vector machines, GPUs)

MISD (Multi Instruction, Single Data) – different instructions are
performed on the same data, this model is rather theoretical
and not widely used (space shuttle program – safety critical
systems, final results should agree)

MIMD (Multi Instruction, Multi Data) – processing units perform
computation independently, on different inputs (most
multicore architectures)



How to design a parallel solution?

Understand the problem thoroughly. Can it be parallelized?

I Compute n-th Finobacci number, F (n) = F (n− 1) +F (n− 2).
I Calculate the potential energy for each of several thousand

independent states of a molecule. When done, find the
minimum energy state.

embarassingly parallel problem – solving many independent tasks
with little or no coordination
communication – exchanging the data between processes/threads
(shared memory, messages, network packets)
synchronization – coordination of parallel tasks in real time, usually
involves waiting for other tasks to finish and communication
between processors/threads



How to design a parallel solution?

Understand the problem thoroughly. Can it be parallelized?
I Compute n-th Finobacci number, F (n) = F (n− 1) +F (n− 2).

I Calculate the potential energy for each of several thousand
independent states of a molecule. When done, find the
minimum energy state.

embarassingly parallel problem – solving many independent tasks
with little or no coordination
communication – exchanging the data between processes/threads
(shared memory, messages, network packets)
synchronization – coordination of parallel tasks in real time, usually
involves waiting for other tasks to finish and communication
between processors/threads



How to design a parallel solution?

Understand the problem thoroughly. Can it be parallelized?
I Compute n-th Finobacci number, F (n) = F (n− 1) +F (n− 2).
I Calculate the potential energy for each of several thousand

independent states of a molecule. When done, find the
minimum energy state.

embarassingly parallel problem – solving many independent tasks
with little or no coordination
communication – exchanging the data between processes/threads
(shared memory, messages, network packets)
synchronization – coordination of parallel tasks in real time, usually
involves waiting for other tasks to finish and communication
between processors/threads



How to design a parallel solution?

Understand the problem thoroughly. Can it be parallelized?
I Compute n-th Finobacci number, F (n) = F (n− 1) +F (n− 2).
I Calculate the potential energy for each of several thousand

independent states of a molecule. When done, find the
minimum energy state.

embarassingly parallel problem – solving many independent tasks
with little or no coordination
communication – exchanging the data between processes/threads
(shared memory, messages, network packets)
synchronization – coordination of parallel tasks in real time, usually
involves waiting for other tasks to finish and communication
between processors/threads



Granularity

Granularity describes the ratio between the communication time
and the computation time. In fine-grained systems single tasks
tend to be small, so the processors communicate frequently. On
the other hand, in coarse-grained systems, tasks are big and the
communication happens rarely .



Speed-up

The simplest and the most commonly used measure of parallel
programme’s performance is the observed speed-up.

speed-up = wall-clock-time-of-serial-execution
wall-clock-time-of-parallel-execution

Note that it is an experimental indicator. We will learn about
theoretical ones later.



Scalability

Scalability
Scalability describes how adding more processing units affects the
performance.

Strong scaling. Increasing the number of processors does not
increase the size of the problem. We want to be able to solve the
same problem faster.
Perfect situation: doubling the number of processors reduces the
computation time by half.

Weak scaling. Increasing the number of processors does not
increase the size of the problem per processor. We want to be able
to solve larger instances in the same time.
Perfect situation: doubling the number of processors allows us to
solve problems of double size.



Amdahl’s law

The scalability has its limits. Let α be the fraction of computation
that is (and has to be) sequential. Thus 1 − α of computation can
be parallelized. Let p denote the number of processors.

Amdahl’s law. The maximum speed-up is

speed-up = wall-clock-time-of-serial-execution
wall-clock-time-of-parallel-execution

≤ α total-num-of-steps + (1 − α) total-num-of-steps
α total-num-of-steps + 1−α

p total-num-of-steps

= 1
α+ 1−α

p



Amdahl’s law, continued

Suppose that 75% of a program can be parallelized, the rest is
necessary to combine the results. With 4 processors, we obtain
speed-up at most 2.29. With 8 processors, we get 2.91. Thus,
doubling the number of processors gives us the speed-up of 1.27.

num. of proc. α = 0.5 α = 0.9 α = 0.95 α = 0.99
10 1.82 5.26 6.89 9.17
100 1.98 9.17 16.80 50.25

1 000 1.99 9.91 19.62 90.99
10 000 1.99 9.91 19.96 99.02
100 000 1.99 9.99 19.99 99.90



Amdahl’s law, continued

Suppose that 75% of a program can be parallelized, the rest is
necessary to combine the results. With 4 processors, we obtain
speed-up at most 2.29. With 8 processors, we get 2.91. Thus,
doubling the number of processors gives us the speed-up of 1.27.

num. of proc. α = 0.5 α = 0.9 α = 0.95 α = 0.99
10 1.82 5.26 6.89 9.17
100 1.98 9.17 16.80 50.25

1 000 1.99 9.91 19.62 90.99
10 000 1.99 9.91 19.96 99.02
100 000 1.99 9.99 19.99 99.90



How do we measure speed of computers?

FLOPS = FLoating-point Operations Per Second

MFLOPS = 106 FLOPS
GFLOPS = 109 FLOPS
...

Currently fastest supercomputer: Sunway TaihuLight (China),
93 PFLOPS = 93 · 1015 FLOPS



How do we measure speed of computers?

FLOPS = FLoating-point Operations Per Second

MFLOPS = 106 FLOPS
GFLOPS = 109 FLOPS
...

Currently fastest supercomputer: Sunway TaihuLight (China),
93 PFLOPS = 93 · 1015 FLOPS



Distributed systems

In distributed systems, the computing elements are independent
units (e.g. PCs) connected via some network.

Why do we use distributed systems?
I they are relatively cheap,
I load sharing (better usage of computing power),
I resource sharing,
I good flexibility – we can add and remove units,
I safety (even if one machine crashes, we can still perform the

computation)
I redundancy in memory.



Possible problems in parallel and distributed systems
What are possible problems?

I system selling plane tickets,

I sharing network printer,
I sharing documents (as in Dropbox),
I Bitcoin system

There are only two hard problems in distributed systems:
2. Exactly-once delivery
1. Guaranteed order of messages
2. Exactly-once delivery

There are only two hard problems in computer science: we only
have one joke and it’s not funny.



Possible problems in parallel and distributed systems
What are possible problems?

I system selling plane tickets,
I sharing network printer,

I sharing documents (as in Dropbox),
I Bitcoin system

There are only two hard problems in distributed systems:
2. Exactly-once delivery
1. Guaranteed order of messages
2. Exactly-once delivery

There are only two hard problems in computer science: we only
have one joke and it’s not funny.



Possible problems in parallel and distributed systems
What are possible problems?

I system selling plane tickets,
I sharing network printer,
I sharing documents (as in Dropbox),

I Bitcoin system

There are only two hard problems in distributed systems:
2. Exactly-once delivery
1. Guaranteed order of messages
2. Exactly-once delivery

There are only two hard problems in computer science: we only
have one joke and it’s not funny.



Possible problems in parallel and distributed systems
What are possible problems?

I system selling plane tickets,
I sharing network printer,
I sharing documents (as in Dropbox),
I Bitcoin system

There are only two hard problems in distributed systems:
2. Exactly-once delivery
1. Guaranteed order of messages
2. Exactly-once delivery

There are only two hard problems in computer science: we only
have one joke and it’s not funny.



Possible problems in parallel and distributed systems
What are possible problems?

I system selling plane tickets,
I sharing network printer,
I sharing documents (as in Dropbox),
I Bitcoin system

There are only two hard problems in distributed systems:
2. Exactly-once delivery
1. Guaranteed order of messages
2. Exactly-once delivery

There are only two hard problems in computer science: we only
have one joke and it’s not funny.



Possible problems in parallel and distributed systems
What are possible problems?

I system selling plane tickets,
I sharing network printer,
I sharing documents (as in Dropbox),
I Bitcoin system

There are only two hard problems in distributed systems:
2. Exactly-once delivery
1. Guaranteed order of messages
2. Exactly-once delivery

There are only two hard problems in computer science: we only
have one joke and it’s not funny.


